
NASA CR-13 4 4 62

NASA-CE-134 4 6 2) NASIS DATA BASE N73-3014

MNAGEMENI SYSTE: IBM 360 TSS
IPNLEGENTSYION- VOLUME 8: DAT2 BASE Unclas

ADMIISTRA TOR (Neoterics, Inc., Cleeland, B 3/0 un

Ohio.) 197 p HC $12.00

NAS IS DATA BASE MANAGEMENT SYSTEM - IBM 360 TSS IMPLEMENTATION

VI I I - DATA BASE ADMINISTRATOR USER'S GUIDE

NEOTERICS, INC.

prepared for &

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

NASA Lewis Research Center

Contract NAS 3-14979

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

PAGE 2

TABLE OF CONTENTS

TOPIC A - MULTI-TERMINAI TASKING

A.2 MT/T CPERATORS GUIDE. 7
I. INTRODUCTION 7
II. MCNITOR COMMANDS * * 7
APPENDIX A . * * • 11

COMMAND SUMMARY 11
APPENDIX B. 12

EESSAGE SUMMARY. 12

TOPIC B - DATA BASE EXECUTIVE

B.1 DBPAC CONV. AND FCBM. ROUTINES. 17
I. INTRODUCTION. , 17
II. CALLING SECUENCE 18
III. RESTRICTIONS,. 20
APPENDIX A , * 21
Diagnostic Messages and Codes. 21
APPENDIX P 22

Sample Validaticn Routine. 22
B.2 DBPLI LANGUAGE EXTENSION 23

I. INTRODUCTION. 23
II. THE PREPROCESSOR. 23
III. DATA EASE AND FILES 25
IV. RECORDS 29
V. IFELDS. 30
VI. LISTS ,. o 33
VII. RULES AND SYNTACTIC DESCRIPTIONS. 39

The CCIIST Function 40
The CLOSE Statement 41
The CPLIST Function *. * 42
The DB Preprocessor Function. 43
The DUPLIST Function.. * . . 45
The #FIELD Function 46
The FINISH Statement. 47
The FREE LIST Statement 48
The GET FIELD Statement 49
The GET INDEX KEY Statement 51
The GET KEY SET Statement 52
The GET LIST INT, KEY INTO Statement. . 54
The GET LIST KEY (0) Statement. 55
The GET LIST KEY INTO Statement 56
The GET LIST KEY SET Statement, 58
The GET LIST SET Statement. 59
The GET RECORD Statements 61
The % INCLUDE DB Statement. 62
The LIST Function 63
The #IIST Function. 64
The LCCATE Statement. 65
The LOCATE SUEFILE Statement. 67

PAGE 3

The ON Statement, * * , . * 68

The OPEN Statement. * * . . . 69

The PUT FIELD Statement 71
The PUT LIST INT. KEY FROM Statement. . . 73
The PEAL Statement. 74

The READ INDEX Statement. . . * ... 77

The REAL SUBFILE Statement. 79

The REFUT Statement 81
The SET LIST LIKE LIST Statement. 84
The ULIST Function. 85
The UNLCCK Statement, 86

The UPLIST Function 87

The WRITE Statement 88

The #XREF Function. , . 89

APPENDIX A.. * . . 92
File Level Statements 92
Record level Statements 92
Physical Record Statements 93

Field Level Statements. 93

Data Base List Statements ,. 93
Non Data Base List Statements 93

Glossary. , . . . 95

TOPIC C - UTILITIES

C,.2 CONV., VALIt., FORM. ROUTINE DRIVER 96
I. INTRODUCTION, 96
II. LINKING RDBDRIVE. 96

III. OPERATIONS. 96

APPENDIX A..100

Sample Test Driver Session.100
C.3 MESSAGE FILE EDITOR.101

I. INTRCDUCTION. 101

II. REGION CODE101
III. FILE ORDERING BY NUMERIC KEY.102
IV. UNIQUE CHARACTERISTICS OF AN ENTRY. . . .103
V. COMMANDS.103

DELETE •103
REPLACE104
rISPLAY 104

PREFIX104
END 104

C., RDBJCIN - JOINING NEW USERS106
I. INTRODUCTION. 106
II. COMMA106

JOIN* * * * o * # *106

OUIT, . , * . * *107
CHANGE.107
ArD107
rILFTE , 197
DISPLAY108

III. EXAMPLES.108

PAGE 4

TOPIC D - MAINTENANCE

D.1 MAINTENANCE SUBSYSTEM.109

I. INTRODUCTION,109

II. THE MAINTAIN COMMAND. 109
D.2 DESCRIPTOR EEITOR.110

I. INTRODUCTION, . . . o * 110
II. INVOKING THE EDITOR110

III. DEFINATIONS111
IV. CREATE MODE FUNCTION.111

ADD-CHANGE Function111
AUDLIKE Function..119

CRX CIVE Function120

CREATE SUBFILE Function120

DELETE Function.121

DISPLAY Function..121
END Function.121

FIELDS Function122

FILE Function122
FIELD SECURITY,.122
MOVE Function123
PRINT Function.124
RENAME Function125

RECORD SECURITY Function125
RESTORE Function.125
SAVE STRATEGY Function125
DEFINE SUPER FIELD Function o126

IV. UPDATE MODE FUNCTIONS127

CHANGE Function127
DISPLAY Function.130

END Function.. 131
FIELDS Function131
FIELD SECURITY Function131

PATCH Function132
RECORD SECURITY Function.135
PEVIEW Function136

APPENDIX A.. . , , • •138

Command Formats138

APPENDIX B..142
Create Code Operand Relationship,142

APPENDIX C.144
Predefined Fields144

APPENDIX D.147

Descriptor File Overview,147
APPENDIX E..150

The Position of Fields.150

D.3 RDELCAD - LOADING NEW FILES.151
1. INTRODUCTION.151

II. INVOKING DELOAD151

III. OPERATING MODE.154

TV. DBLOAD EXIT RCUTINES.154
V. CHECKPOINT BACKUP157
VI. LOADING MULTI-FIIES157

PAGE 5

D.4 FILE INVERSICN - INDEXING.163
I. INTRODUCTION 163
II. MODE OF OPERATION163
III. INVOKING DESIVRT,164

IV. EXAMPLES,165
D.5 INDEX MERGE - COMBINE. . . . * . . * *167

I. INTRODUCTION,167
TI. MODE OF OPERATION167
III. INVOKING DBINtM ,167
IV. EXAMPLES.168
V, PROGRAM NOTES168

D.6 CORRECT COMMAND169
CORRECT Command169
CORRECT ADD Subcommand.171

CORRECT CANCEL Subcommand.172
CORRECT CORRECT Subcommand.173
CORRECT DELETE Subcommand174
CORRECT DISPLAY Subcommand..175
CORRECT END Subcommand,176
CORRECT FIELDS Subcommand177
CORRECT INSERT Subcommand ,178
CORRECT REPLACE Subcommand. ,179
CORRECT VERIFY Subcommand180

D.7 RDBMNTN - MAINTENANCE - UPDATE181
I. INTRODUCTION. 181
II. INVOKING MAINTENANCE.181
III. MAINTENANCE OPERATING PROCEDURES. . . .181
IV. MODE OF OPERATION181

TOPIC E- TERMINAL SUPPORT

E.1 TSPLI LANGUAGE EXTENTION183
I. INTRODUCTION.183
II. STATEMENTS.184

ENABLE Statement. 184
ENTRY Statement185
ON PAGE CALL Statement.185
PROMPT MSG Statement.185
PROMPT MSG KEYWORD Statement.186
READ INTO Statement187
WRITE FROM Statement.187
PUT FRCr Statement.187
FLUSH Statement188
FINISH Statement..188

TOPIC 7 - RETRIEVAL SUBSYSTEM

F.1 LIMIT 189

TOPIC G - USAGE STATISTICS

G.1 USAGE STATISTICS190
I. INTRODUCTION.190

PAGE 6

II. STATISTICS CHECKPOINT . . . * * * * * * .190

III. RETRIEVAL STATISTICS REPORT191

IV. MAINTENANCE STATISTICS REPORT . . * * * .191

PAGE 7

TOPIC A.2 - MT/I OPEPAICB'S GUIDE

I. INTRODUCTION

The single program that controls NASIS when the MT/T
version of that system is running is called the MT/T
Monitor. The monitor is the only part of NASIS with which
the MT/T Operator communicates.

Preparatory to initiating NASIS, you must "log on" the TSS
task (USERID) from which the MT/T version of NASIS is to be
driven.

After logon enter NASISMTT to bring up operational NASIS on
NEWNASIS to bring up the experimental system. At this point
TSS loads all the programs that comprise NASIS into memory.
During initiation the MTT monitor reads in the
NASIS.COMMANDS (o) DATASET containing the LIMIT, NEWS, and
PGMSTOP monitor commands (discussed later). After
initiation the monitor sends the following message to the
operations terminal: "NASIS COMMENCING". At this point MTT
will allow users to loqon.

To communicate with the monitor simply depress the ATTENTION
key. The monitor will prompt you with a time-stamped
question mark, for examrle:

10:25 ?

and unlock the keyboard. Note that while your keyboard is
unlocked, NASIS is stopped. Waste no time in entering
commands and never, never leave your terminal sitting with

its keyboard unlocked.

II. MONITOR COMMANDS

The monitor comrands are comprised of a command name and, in
some cases, additional operands. The monitor, when reading
commands, reccgnizes three "special" characters--two
delimiters: (separators between command names and/or
operands) comma and blank, and a character which may enclose
an operand to denote that that operand has "special"
characters within it: the quote mark. The delimiters
behave slightly differently--a string of contiguous blanks
is interpeted as one delimiter, but two contiguous commas
are interpeted as two delimiters, and so forth. If you have
to put blanks, commas or quotes within an operand, you must
surround that cperand with quote marks. In addition, if
there are enclosed quotes, they must be paired inside the
operand. For example

'don''t let this confuse you, it''s not really that

PAGE 8

difficult'
is a valid quoted string containing embedded commas, blanks

and Quote marks.

Under certain circumstances pressing the ATTENTION key will

yield an exclamation-mark instead of the Monitor prompting
message. When hitting ATTENTION does not get you the

Monitor's question-mark prompt, enter the (TSS) command

"RESET". After you see the ">SOMEWHERE" message, try
hitting ATTENTICON again. This time it will work.

MSG NASISI,TEXT Sufficient Abbreviation
(S.A.): M

This command sends the message specified by the TEXT operand
to the user who is on NASIS under the userid specified by
the operand NASISID. Remember to surround the message text
with quote marks if it contains commas, quote marks, or

imbedded spaces. Exarrle:
M NEO1,'HERE''S A MESSAGE.'

BCST TEXT S.A.: B
This command sends the message specified by the TEXT operand
to all the users logged on to NASIS. Example:

BC 'DATACEIL IS DCVN NSIC notAVAILABLE.'

FORCE NASISID S.A.: F
This command is used to terminate a NASIS user, The user
(identified by NASISID) is sent the message
,*** TASK DELETED BY FORCE ***" and then logged off.
Example:

F NEOl

KILL NASISID S..: K
This command is used vwen FORCE fails, The KILL command may
be reentered several times, The user (if the KILL works)
will receive a program interrupt five at location zero, so
you may ignore the message about that event. Example:

KI NEO1

SHUTDOWN TIME S.A,. S
This command terminates NASIS. The TIME operand specifies
how long to wait before actually terminating the system
(default is five minutes), If the time specified is zero
minutes NASIS is terminated immediately. This zero-time
shutdown should be used only when absolutely necessary
because it doesn't give warning to the users. Normally,

both you and the users get a message stating the time-of-day
when the system will shut itself down. Should you change

your mind atout the shutdown enter another shutdown to

override the previous cne. (Cnly the last SHUTDOWN command
entered has any effect.) Example:

S 30 (To terminate NASIS in a half-hour)

PAGE 9

LIMIT TERM,# S.A.: L
This command allows you to limit the number of users of
various sorts allowed on NASIS and to limit some of the
resources of NASIS itself. The TERM operand is either a
"class" of NASISIDs (defined as the first two characters of
the NASISID) or one cf the keywords "USERS", "PRINTS",
"SEARCHES", "SCRTS" or "RECCRDS". The keyword "USERS" is
used to limit the total number of users allowed on NASIS and
is the default value assumed if TERM is omitted. Keyword
"SEARCHES" limits the size of a set a NASIS user may search
on, "PRINTS" limits the size of a set he may print and so
on. If the TERM operand consists of exactly two characters
it is assumed tc be a class name and the number of NASISIDs
of that class allowed on NASIS will be limited. If the TERM
operand consists of any other number of characters than two,
it is assumed to be a keyword or a part of a keyword. If
the # operand is defaulted, the value 32767 is used. If the
4 operand is entered, TERM must be also entered, even if you
use just a comma to default it. Examples:

LIMIT ,20 (Limit total number of users to 20)
L S,50 (limit search set size to 50)
LI NE,2 (Limit "NE" NASISIDS to 2)

USERS S.A.: U
This command lists all the NASISIDs of the users currently
using NASIS. Only those users completely logged on are
listed, if there are users in the process of getting on,
they will not show up on the list from a USERS.

NUSERS S.A.: N c/:N/: N/
This command tells you how many users are currently using
NASIS. Unlike USERS, this command also tallies the users
vbo are in the process of logging on.

DEBUG S.A.: D
This command places tte Monitor into debugging mcde and
returns to you with ancther prompting message. Only in this
mode can you enter TSS ccmmands through the Monitor.
Furthermore, in this mode the Monitor will continue
prompting you until you respond with a null line (only a
carriage-return). This command should be used only when
absolutely necessary as it ties up NASIS for as long as the
operator terminal is being read from.

NEWS "OFF"jTEXT S.A.: NE
This command is used to control the sending and composition
of the "news" which is sent to each user as he logs on to
NASIS. Entering "OFF" as the operand terminates the sending
of all nevs and deletes all the text from the news buffer.
Entering anything but "OFF" causes whatever you enter to be
added as the last line to whatever is already in the news
buffer. If you enter no operands at all to NEWS, it will
add a carriage-return to the end of the news buffer.

PAGE 10

xamples:
NEWS OFF (Kills the sending of news)

PGMSTOP "ON"J"OFF" S.A. P
This command tells the Monitor whether or not to stop
whenever it encounters a program interrupt (serious error).
If the operand entered is "OFF", the Monitor will continue
processing without pausing after a program interrupt. If
"ON" is entered, the Monitor will pause at your operator
terminal in TSS command mode after a program interrupt.
This is normally used so that one of the systems people can
try to solve a problem. To continue NASIS execution after
the pause, enter the (ISS) command "GO".

RECORD LEVEL S.A. R

The RECORD command is used to set the data recording level
in the monitor. This level is used to determine which
events, if any, the Monitor will attept to record on the
SIPE tape. NOTE: Merely turning on the Monitor's
recording mechanism does not ensure that the units will be
recorded - SIPI itself must have been initiated by the TSS
operator.

IN 5 STATS "ON/"OFF" S.A. ST

When this command with operand OFF is encountered, the
Monitor turns cn an indicator telling NASIS not to take
usaqe statistics. If CN is entered as the operand, that
indicator is turned off. NOTE: This command may only be
entered via the "NASIS.COMMANDS()" dataset.

PAGE 11

APPENDIX A. - COMPAND SUMMARY

COMMAND OPERANrS FUNCTION

(TSS commands)

NASISMTT Bring up normal NASIS.

NEWNASIS Ering up experimental NASIS.

GO Fesume after interrupt pause.

RESET Reset operator attention routine.

(NASIS commands)

MSG NASISID,TEXT Send message to specified user.

BCST TEXT Send message to all users,

FORCE NASISIr Get rid of a user.

KILL NASISID Peally get rid of a user.

SHUTDOWN TIME lerminate NASIS.

LIMIT TEPM,# Limit NASIS users or resources.

USERS List current NASIS users.

NUSERS Ccount current NASIS users.

DEBUG Enter "debugging" mode.

NEWS "OFF"JTEXT Turn off or add to news text.

PGMSTOP "ON"I"CFF" Set interrupt stop mode.

RECORD LEVEL Set recording level.

STAYS "ON"/"OFF" Set usage statistics mode.

PAGE 12

APPENDIX B. - MESSAGE SUMMARY

The following secticn contains a list of all the messages in
the Monitor. There are error messages, informational
messages and response messages whose formats and meanings
you should be familiar with.

CLO RC=XX
This is the error message the Monitor issues when it
receives an invalid return code from the (TSS) CLEARQ
function (the actual hexadecimal error code received is XX).
This indicates a minor failure within TSS itself but the
Monitor will attempt to continue execution.

FDQ DVT=XX SDA=NNW
This is the error message the Monitor issues when it
encounters (from the TSS FINDO function) a terminal type it
doesn't know about. The Symbolic Device Address of this
unknown terminal is displayed in NNNN and the device type
displayed in XX. The Monitor will attempt to disconnect the
terminal and forget about it.

PGH SIR RC=XX
In attempting to initialize the routine which gets control

upon the cccurance of a program interrupt (see the PGMSTOP
command description), the Monitor ran into trouble in the

TSS SIR functicn. The error code which that function
returned is displayed in XX. The Monitor will continue
execution but will not get control when a program interrupt
occurs.

WBQ/RDQ RC=XX
This error message is printed whenever the actual attempt to
write or read one of the user terminals was disallowed by
TSS. The failure code is displayed in XX and the Monitor
will attempt to continue execution, pretending that this
internal failure was an I/O error.

TS STIMER FC=XX
In attempting to set the (TSS) timer by which a user is
time-sliced, an error was encountered in the STIMER
function. Since user's can't be run successfully without
time-slicing, the user involved will be logged off by the
Monitor. The error code found by the Monitor is disolaved
in XX and after logging off the user, the Monitor will
continue execution.

TS TTIMER 4 C=XX
This message is issued when the Monitor is unable to CANCEL
the time-slicing timer for a user. The error return from
the TTIMER function is displayed in XX and the Monitor
pretty much lust ignores this error. It is not deemed to be

PAGE 13

erious

BAD PHONELINE SA=NNNNN
This message is issued to you when the Monitor detects solid
I/O errors on one of the user's telephone lines. (Usually
this is caused by a user just hanging up the phone instead
of logging off normally or by excessive "line noise" on an
FTS line.) After this message is issued, the user involved
(if there is one) will be automatically logged off and the

Monitor will continue execution. The Symbolic Device
Address of the telephone line causing the error is displayed
in NNNN.

LOGON TKD=XXXX SEA=NEWN UID=YYYYYYYY
This message is sent tc you every time a user logs on to
NASIS. His "Taskid" (which is just a number equal to the

number of times somebody has tried to log on during the

session) is displayed in XXXX, the Symbolic Device Address

of the user's terminal is displayed in NNNN and the NASISID
of the user is displayed in YYYYYYY. This is only an

informational message.

LOGOFF UID=YYYYYYYY
This message is sent to you each time a user logs off of
NASIS. The NASISID of the user leaving us is displayed in
YYYYYYY. (Sometimes a NASISID of "????????" will be
displayed if the Monitor is unable to determine what the
NASISID of the user is, for example if he tried to enter a
NASISID three times and did not come up with one that was
valid.) This is only an informational message.

USERS=NNN
This is the response message to the NUSERS command. NNN
merely contains the number of users currently attached to
NASIS.

SDN STIMER RC=XX
This message is displayed when the Monitor was unable to get
a timer started for a timed SHUTDOWN. The error code
returned by the STIMER function is displayed in XX. The
Monitor will continue execution but the SHUTDOWN command was
cancelled. It is suggested that you BCST warning to all the
user's and then use "SHUTDOWN 0" to shut NASIS down when the
time comes.

SHUTDOWN AT HH:PM
This message is the response to a successful SHUTDOWN
command and tells you at what time- of-day the system will
actually terminate. This is only an informational
message.

SDN TTIMER RC=XX
This error message is displayed when the Monitor is unable

PAGE 14

to CANCEL the timer which was set for a previous SHUTDOWN
command, The errcr ccde returned by the TTIMER function is
displayed in XX and the Monitor will continue execution but
ignore the SHUTDOWN command which caused the error.

RTRN SIR RC=XX
This error message is displayed when the Monitor is unable
to initialize the routine it uses to transfer control from
one user to another. The error code from the SIR function
is displayed in XX and shortly after it sends this error
message the Monitor will cause NASIS to terminate
processing.

PGM INT VPSW=XXXXXXX1XXXX UID=YYYYYYYY
XXXXXXXX XXXXXXXX XXXXXXXX...
XXXYXXXX XXXXXXXX XXXXXXXX...

This is the message displayed when the Monitor detects the
occurance of a program interrupt. The only thing which will
concern you in this message is the YYYYYYYY which is the
NASISID (if any) of the user causing the failure.
("??????" will be displayed if there was no NASIS user
involved.) After this message appears at your terminal,
the user will he notified that the system has failed and
then logged off. See the PGMSTOP command descripticn for a
further discussion of what the Monitor will do after it
prints this message. (For those who may be interested, the
animal before the UID field is the Virtual Program Status
Word as of the time of the interrupt and the two lines of
XXXXXXXXs are the users general registers zero through
fifteen.)

MSG FROM YYYYYYYY-AAAABBIBCCCCDDDDEEEE...
This is the message the Monitcr prepares for you when one of
the user's wants to send you a message (with either the user
MSG or HELP command). The NASISID of the user sending you
the message is displayed in YY¥YYTYY and the message itself
is displayed in AAAAEPEE...

BAD LIMIT COMMAND
This error message is displayed when you enter one or more
invalid operands to a LIMIT command. You are referred to
the discussion of that command for the correct operand
formats.

MISSING '
This error message is displayed when you don't follow the
rules set forth in the first section of this Oerator's
Guide for the entering of ouote marks. What it really
means is that you have forootten to a.) pair enclosed quote
marks or b.) forgotten to surround an operand containing
quote marks with quote marks. You can, of course, re-read
the first part cf this Guide.

PAGE 15

TOO MUCH NEWS
This error message is displayed when the total number of
characters in the news text exceeds 4C96. All you can
really do is either quit making news or delete all the news
text and start over. The NEWS command which raised this
error condition is ignored. (See the description of the
NEWS command.)

(The last three error messages will be followed by a 7-digit
"line number" if the error was caused by a line in the
"NASIS.INITIAL.COMMANDS" dataset. You are advised that the
command in question is not executed and that you should
investigate the dataset for errors.)

BAD COM DS LINE NNNNNNN
This error message is produced when a line in the
"NASIS.INITIAt.COMmMNES" dataset is discovered to have no
text (line is tco short). The line number of the bad line
in that dataset is displayed in NNNNNNN and the Monitor will
ignore this line and try to read another.

NASIS TERMINATING
This is the informational message which is sent to you by
the Monitor when it is beginning to terminate NASIS as the
result of a SHUTDCWN command or a serious error.
Approximately fifteen seconds after this message is printed,
the Monitor will relinquish control leaving you in TSS
command mode once again. (This 15-second pause is so that
all the users' terminals have time to finish typing whatever
they are typing.)

NO MEMORY-TCTE
This error message is displayed when the Monitor was unable
to obtain memory in which to construct a task control table
for a user who was attempting to log on to NASIS. The user
will not be logged on and probably quite a few other things
will start going wrong after you see this message.

NO MEMORY-UTBL
The Monitor was unable to obtain memory for the user table
while it was initializing itself and is about to give up the
effort since it will need more memory for other things. The
Monitor will perform an automatic SHUTDOWN.

QUIT LOGIC ERR
This error message is printed when the Monitor's LOGOFF
routine is called but can find no user to log off. This is
a programming spaz about which somebody should be notified.
The Monitor will ignore this error after discovering it.

NO MEMORY-NEWS
The Monitor was unable to ottain memory for the news-text
buffer. The action for this error is the same as the action

PAGE 16

for the failure to obtain memory for the user table. The
Monitor gives up and dies.

NO NASIS.USERIS
The Monitor was unable to locate the dataset containing the
list of permissible NASISIDS to allow onto the system. The
Monitor will terminate NASIS shortly after this message is
sent. You should go pound on the Data Base Administrator as
this message implies somebody has lost the user list.

BAD USERID
This message is sent when you specify an invalid NASISID to
a MSG, FORCE cr KIll command. The Monitor continues
execution after ignoring the command which caused the
error.

NO MSG
This error message is sent to you after you have entered a
MSG or BCST command and not specified any message to be
sent. The Monitor continues execution after ignoring the
command which caused the error.

NASIS COMMENCING
This informational message is sent to you after the Monitor
has initialized NASIS and is beginning to allow user's
access to NASIS. It is at this point that NASIS is
considered "up and running".

NO MEMORY-ICT
This error message is issued if the Monitor is unable to
obtain memory fcr the list of connected terminals which it
must maintain. The Monitor recoqinzes this as a serious
error and causes NASIS to terminate after it encounters
it.

NO MEMCRY-ATN
This error message is sent when the Monitor discovers that
it can't allocate the necessary memory for an attention
interrupt table for a user. This error probably means that
bad things are about to happen (because memory is getting
short) but it ignores the error anyways. It also ignores
the (user's) attention which caused the discovery of the
error.

PAGE 17

TOPIC B.1 - CONVERSION, VALIDATION, AND FORMATTING
ROUTINES

I. INTRODUCTICN

The design of the NASIS system provides for three types
of user-written routines to perform special processing
unique to a particular field. A "user" is a mainline
programmer for the specific data base; such as the data
base administrator. These routines are classified as
conversion, validation and formatting.

The DBPL/I statements used in the NASIS system provide
for updating and retrieving from a data base. The data
is always assumed to be character strings. The ability
to specify Ccnversion, Validation and formatting
routines is provided, allow for massaging field data
and still meet the DBPL/I character string
requirement.

The Conversion routine is used to alter character
string input to any desired form. The Validation
routine is used either to verify the results of a
Conversion routine or to verify the character string
input.

The Formattinc routine is used to alter the internal
stored data back tc a character string.

A. CONVERSION Routine

The CCNVERSICN routine is called by the data base
executive, DEFAC, to convert the data passed by
the user in a DBPL/I statement from an EBCDIC
character string to some other type of
representation for storage on a file. The
CONVERSION routine is invoked by all DBPL/I
statements that place data, by field name, onto
the data base.

B. VALIDATION Routine

The VALIDATION routine is call of theed
inmmediately after the call CONVERSION routine.
The function of this routine is to verify data
input for storage on the data base, via the rules
specified by the user of this field. A VALIDATION
routine may be present regardless of the presence
of a CONVERSION routine. To assist in this
evaluation, the NASIS system provides for a
validation arqument.

PAGE 18

C. FORNATTING Routine

The FORMATTING routine is called to change the
data read from the data base into the desirable
output form. The FORMATTING routine is invoked by
all DBPL/I statements that retrieve data, by field
name, from the data base. The formatting routine
specified for a field will be called whenever the
data in that field is retrieved.

A ccllecticn of "standard" conversion and
formatting routines is provided in the RDBEXITS
module (Section IV, Topic B.4).

I. CALLING SECUENCE

In general, these routines are called dynamically, by
name. They must reside in DBALIB and be capable of
accepting a PL/I formatted parameter list.

A. CONVERSION Routine

The fcrmat of the CALI statement used by rBPAC to
invoke the CONVERSION routine is as follows:

CALL rtnname (input-data, output-area,
error-bit);

where:

"rtnname" identifies the particular routine
to be called, as specified in the field
descriptor. It is the routine's
procedure name or an entry point.

"input-data" is a varying length character
string, maximum length equal to 4000,
into which DEPAC has placed the input
data value.

"cutput-area" is a varying length character
string, maximum length equal to 4000,
initialized to null, into which the exit
routine places the converted data
value.

"error-tit" is a bit switch, initialized to
one (1), which is set to zero (0) if
there were no errors uncovered in the
conversion, or one (1) if errors were
detected. The burden of setting the
switch to zero (0) is with the
CCEVERSION routine.

PAGE 19

B. VALIDATION Routine

The format of the CALL statement used by CBPAC to
invoke the VALIDATION routine is as follows:

CALL rtnname (input-data, output-area,
error-bit, argument);

where:

"rtnname" identifies the particular routine
to be called, as specified in the field
descriptor. It is the routine's
procedure name or an entry point.

"input-data" is a varying length character
string, maximum length equal to 4000,
into which DEPAC places the input data
value after conversion.

"cutput-area" is a varying length character
string, maximum length equal to 4000,
initialized to null, into which the exit
routine places the validated data
value.

"error-tit" is a tit switch, initialized to
one (1), which is set to zero (0) if
there were no errors encountered in the
validation, or one (1) if errors were
detected. The VALIDATION Routine is
responsible for setting this switch.

"argument" is a varying-length character
strina, maximum length equal to 50, into
which EBPAC places the validation
argument, as read from the appropriate
field of the descriptor for this data
field.

C. FORMATTING Routine

The format of the CALL statement used by DBPAC to
invoke the FGFMATTING routine is as follows:

CALL rtnname (input-data, output-area);

where:

"rtnname" identifies the particular routine
to be called, as specified in the field
descriptors. It is the routine's
procedure name or an entry point.

PAGE 20

"input-data" is a varying length character
string, maximum length equal to 4000,
into which DBPAC places the data value
read from the data base.

"output-area" is a varying length character
string, maximum length equal to 4000,
initialized to null, into which the exit
routine places the formatted data
value.

III, RESTRICTIONS

The routines must heed the following restrictions:

A. The rcutine can not make any calls to DBPAC (i.e.,
it shculd not contain any DBPL/I statements).

B. The routine is the lowest level module; i.e., it
does not call any other routines.

C. The rcutine is written in PL/I.

PAGE 21

APPENDIX A.

Diagnostic Messages and Codes Produced By the Conversion,
Validation, and Formatting Routines.

A. Diagnostic Messages

CALL ERROR: MODULE ******** CANNOT BE LOADED.

This error message is generated if the module named
cannot be loaded when called by DBPAC. Ignoring the
situation and allcwinq the system to run may cause
unpredictable results.

The most probable reasons for this error are:

1. failure on the part of the user to have the job
library containinq this program properly DDEFed.

2. inconsistency between the name of the routine as
specified in the descriptor file and the name
actually used when writing the program.

B. DBPAC Error Codes Associated With the Conversion,
Validation, and Formatting Routines

031 KEY FIELC FAILEE CCNVFRSIN.

The data value passed to the CCONVERSION routine, for
the key field of the data base, was found to be in the
wrong format.

032 KEY FIELE FAILED VALIDATION.

The data value passed to the VALIDATION routine, for
the key field of the data base, was found to be
invalid.

053 DATA FIELE FAILED CONVEPSION.

The data value passed to the CCNVERSION routine, for a
data field, was found to be in the wrong format.

054 DATA FIELD FAILED VALIDATION.,

The data value passed to the VALIDATION routine, for a
data field, was found to be invalid.

PAGE 22

APPENDIX B.

Sample Validation Routine

A sample VALIDATION routine is shown below. The function of
the routine is to comrare the input data value to each of
the four byte entries carried in the validation arguments.
If a match is found, the routine substitutes a numeric code
for the input data value, resets the error bit to accept the
field and returns to DBPAC. If no match is found, the
routine returns to DEPAC with the error bit set to reject
the field.

/* THIS IS A VAIIDATICN ROUTINE FOR THE OPERATION COEES: */
/* THE PARAFETEFS PASSIE ARE:
/" A= THE INPUT STRING WHICH IS TO BE VALIDATED. */
/ 8B= THE VALUE TC BE RETURNED AFTEP VALIDATION. */

C= THE PIT SWITCH. 'C' MEANS PASSED VALIDATION. */
/ '1' MEANS FAILED VALIDATION, */
/* D= THE VALIDATION ARGUMENTS. */
/* D IS CCMPOSED OF THE FOLLOWING CHARACTER STRING: */
/* 'ADDEADDRCNGEFIDCDEIEDELF' *

CHECKOP: PROCEEURE fA,E,C,D)
DECLARE (A,B,D) CHARACTER(*) VARYING, /*PARAMETERS. */

C BIT(1); /*PARAMETERS. */
ON ERROR GO TO OUTDIRTY;
DO I = 1 10 21 BY 4;
IF A = SUTESTR(E,I,4)
THEN GO TC OUT CIEAN;
END:

OUT DIRTY: /* IF IT DOES NOT MATCH KEYWORDS IN ARGUMENT. */
C = 'I'E;
RETURN;

OUT CLEAN: /* THE VALIDATION OF CP CODE WAS SUCCESSFUL. */
C = 'E;
B = A;
RETURN;
END CHECKCP;

PAGE 23

TOPIC B.2 - DBPI/I LANGUAGE EXTENSION USER'S GUIDE

I. INTRODUCTICN

This manual is for PL/I Programmers writing a mainline
program that accesses a NASIS data base. The data base
organizaticn being used is fully specified in the
"NASIS Overview".

All data base access is done by a combination of:

1. an extension of the FL/I language, called
EEPL/I, for data base access,

2. a compilation-time source program processor,
DB, and

3. execution-time routines DBPAC and DBLIST.

This manual is the specification of the DBPL/I
language extension and is the reference manual to the
DB preprocessor. retailed specification of the
internals of the DB preprocessor are given in Section
IV, Topic B.1 of the DWB, and the details on the
execution-time routines are given in the DEPAC Design
Specifications (Section IV, Topic B.2 of the DWB).
Neither of these two sections are needed for writing,
compiling and executing mainline programs; they may be
needed for debugging.

Chapter II of this manual discusses the usage of the
DB preprocessor. Chapters III through VI are composed
of discussions and examples of the different features
of DBPL/I and their interrelationships. Chapter VII,
"Rules and Syntactic Descriptions", provides a detailed
reference to specific information in alphabetical
order. Appendix A is a quick reference to DEPL/I
syntax.

II. THE PREPROCESSOR

A. Overview

DEPL/I language statements have to be processed
at compilation-time. The processing consists of
syntax analysis and the generation of PL/I
statements CALLing DBPAC to accomplish what the
DBPL/I statements signify. This processing is
done by the preprocessor stage of the PL/I
compiler under control of a preprocessor procedure
named DB. A programmer using DBPL/I does not have
to write the LB preprocessor or be concerned with
the Pi/I statements that are generated by it; but
he is required to write certain statements in his

PAGE 24

source program so that the DB preprocessor is
properly invoked by the PL/I compiler for his
proqram. He must also refrain from usinq certain
identifiers which are reserved words for the DB
preprccesscr's exclusive use.

B. Usage

The statements required to properly invoke the DB
preprccesscr are illustrated in an example program
in Figure 1.

1. FIG_1: PROCEDURE OPTIONS (MAIN);
2. % INC1UEE IISEMAC(DB):
3. rECLARE REPORT# CHARACTER (13) VARYING;
4.
5. Dr ((CN ERPORFILF(STAR) GO TO NOTE;))
6.
7. p(
8. READ FILE(STAB) KEY('67N26508');
9. GET FIIE(STAR) FIELD('REPTNO') INTO(REPORT#) ;
10.))
11. PUT DATA (PEPCBT#);
12. RETURN;
13.
14. NOTE: PUT DATA (STAR.ONCODE);
15. DCNE: DB ((FINISH;))
16. END FIG_1;

% INCLUDE(DE);

One %INCLUDE DB statement must be written
immediately following the external PROCEDURE
statement of the compilation. Any PROCEDURE
statement attributes could have been used in line
1. The % INCLUDE DB statement must precede all
other statements such as line 3.

DBR(ON ERECRFILE(STAR) GO TO NOTE;))

Any DEPL/I statement, such as this ON statement,
must be written as a subarqument in a DB
preprccessor function reference. As many DB
statements may be used as required. Any PL/I
statements required may be used at lines 3, 4, 6,
and 11-14. Lines 7-10 illustrate that more than
one DPPL/I statement may be written in one DB
statement. Eowever, no non-DBPL/I statements
would be permitted within a DB function
reference.

DB((FINISH:))

PAGE 25

One rBPL/I FINISH statement must be written
following all other D/B statements in the
compilation. It will usually be written just
preceding the END statement of the external
procedure because it generates a RETURN statement.
If the statement in line 14 is executed, then the
procedure will be terminated by control passing
sequentially to the RETURN statement generated for
line 15. The label in line 15 is not required,
but it would be valid as shown (e.g., line 12
could te: GO TO DONE;).

The E preprocessor function generates diagnostic
comments (see Section III, Topic B.1 of the
DWB). When reviewing a compilation, the
programmer should first find the summary
diagnostic message (DB067) to know how many error
diagncstics for which to search.

C. Reserved Words

The FINISH ON-condition is reserved for use by the
DE preprocessor. The following identifiers are
reserved for the uses specified in this manual or
for the DB preprocessor's use:

CCLIST
CPLISS
E
DBEFCBP and all other identifiers beginning

'DB'
DUPLIST
IRFORFILE
#FIELD
EEPL/I file-names
FINISH
LIST
*IIST
LISTEPP
ULIST
UPLIST
VXREF

The PL/I HIGH and NULL built-in function names may
be used as such in the program, but the names must
not be otherwise declared.

III. DATA BASE AND FILES

A. Overview

The IBPL/I language provides statements that
enable data to be transmitted between internal

PAGE 26

main storage and external storage devices
oroanized as one or more data bases.

B. rata Sets

Each "data set" is a named, labelled collection of
related data, subdivided into keyed data set
records.

The one "descriptor data set" for a data base
stores data describing the information data set(s)
and their interrelationships. It is a collection
of cne or more descriptor regions.

Each "descriptor region" is a collection of
descriptor records for an information data set.
The first record in a descriptor region is a data
set descriptor record. Subsequent records in a
descriptor region are field descriptor records.

C. Files

DBPL/I requires a file name to be used for a file.
What data set(s) a file name represents is deduced
from the file title. Characteristics of a file
may be described with keywords, called file
attributes, specified for the file name, deduced
contextually, or assumed by default.

A "file name" is an identifier specified in the
FILE clause of DEPL/I statements. A file name may
not exceed the seven-character length limitation
for external names. The user must execute a PL/I
ALLOCATE statement for the MFCB before executing
any EBPL/I statements. For example, to use a
DBPL/I file-name "plex" the following statement
must he executed:

ALLOCATE PLEX;

Of course the allocation must be done in a program
in which PLEX vill be automatically declared
because of its use in a DBPL/I statement. If the
module where the ALLOCATE is to be done does not
otherwise need DBPL/I statements, the following
are recommended as a minimum:

% INCLUDE LISRMAC(DB);
ALLOCATE PLEX;
EB((CN EFROPFILF(PLEX) SYSTEM;))
DBf(FINISH;))

A "file title" can be specified for a DBPL/I file

PAGE 27

either through the file name or through the
character strino value of the expression in the
TITLE option of a DBPL/I OPEN statement. If a
file is OPENed implicitly, or if no TITLE option
is specified in the OPEN statement that causes
explicit opening of the file, the file title is
assumed to be the same as the file name.

A file title, not beginning with a pound sign (),
consists of a six-character left-aligned dataplex
identification and a one-character suffix. Which
data set(s) the file name represents will be
deduced from the file title suffix value as
follows:

tlank: the identified data base cr anchor
data set (for physical record
operations: GET PECOPD or WRITE).

numeric: the particular associated data
set.

Z-Q: the particular subfile data set.

A-P: the particular index data set.

A pound sign (4), prefixed to a file title,
specifies that a file name represents the
descriptor region rather than the information data
set itself. (This combination may be specified
only in the TITLE option of a DBPL/I OPEN
statement because it results in an eight-character
title.) If the eighth character of a descriptor
region title is blank, the file represents only
the anchor descriptor region. This facility
allows mainline programs to create, maintain or
retrieve frcm descriptor regions for their own
purposes.

File "attributes" for a file name may be
specified explicitly in a DBPL/I OPEN statement or
assumed by default. ifferent attributes may be
applied in different openings of the same file in
a program; at any particular time, the attributes
applied by the most recent opening apply to the
file name.

D. File level Statements

DEPL/I provides the OPEN, CLOSE and ON ERRORFILE
statements for file level operations. All are
optional; a simple mainline may not need any of
them. There is no statement for declaring a

PAGE 28

DBPL/I file; the DE preprocessor generates the
necessary Mainline File Control Block (MFCB)
automatically.

The OPEN and CLOSE statements may be used for any
of the purposes indicated in their descriptions in
Chapter VII of this manual.

The ON ERRORFILE statement is used to establish a
user's error routine in the mainline to which the
DBPAC execution routines will return when an error
condition fe.q., key not found) occurs on a file.
Several ON statements for a file may be executed
in a program either before or after the file is
opened.

An "error routine" must begin with a statement
label (the same latel identifier specified in an
ON statement). PL/I (or DEPL/I) statements may be
written following the label to handle the error.
These statements may reference certain fields in
the MFCB for assistance in determining the error
identity and resuming normal execution. MFCP
fields are referenced using a qualified name
ccnsistinq of the file name and an MFCE field
name. The MICB fields that may be referenced in a
file exception rcutine are as follows:

file-name.ONCODE is a binary integer whose
value specifies the exceptional
condition. The meanings of the various
CNCODE values are in Section III, Topic
B.3 of the DWB.

file-name.ONFILE is the current file title.

file-name.ONFIELD is the current field name
(when applicable).

file-name.ONVETURN is a label variable set by
DBPAC.

An error routine may be terminated in any manner;
for certain of the less serious ONCODEs, a GO TO
file-tame.CNRETURN; statement may be used which
transfers control to the statement following the
one that raised the exceptional condition.

For a more generali2ed exception routine for one
or more files, the relevant MFCB fields may be
referenced using a qualified name consisting of
the reserved keyword EFRORFILE and an MFCB field
name; e.g., EBRORFILE.ONCODE.

PAGE 29

I. RECORDS

A. Overview

The data items in a data set are arranged in data
set records. In this manual, a "physical record"
means a single data set record having an internal
self-defining, variable-length format, a
fixed-length internal key, and the other data
items.

The simple term, "record", in this manual means
either a logical record or a physical record,
depending on content.

The "current record of a file" is the single
record having the key value established by the
most recent record level operation on the data
base component file. It is accessible only by
DBPL/I statements; the mainline has no means of
addressing it. In a spanned index, the "current
record" is actually a "region" of one or more
physical records made to behave like one logical
record.

B. Record Level Statements

DBPL/I provides the LOCATE, BEAD, and UNIOCK
statements for record level operations. The
record level statements cause a record (possibly
more than one physical record) to be transmitted
between the data set(s) and the current record of
a file. The transmission may be immediate (READ
or UNLOCK after update) and/or subsequent (LOCATE
or READ for update). LOCATE and REAL cause
automatic file opening, if necessary.

The LOCATE statement is used to create a new
current record having a new key for subsequent
transmission to the file (no WRITE statement is
needed). The LOCATE SUBFILE statement is used to
create a new current subrecord.

The READ statement is used to retrieve a record
from a file and establish it as the current record
of the file. If the record is updated, it is
subsequently retransmitted to the file (no REWRITE
statement is needed). The READ SUBFILE statement
is used to retrieve a subrecord and REAL INDEX to
retrieve an index record.

The UNLOCK statement releases a locked current
record so that other tasks can read it. If the

PAGE 30

reccrd was updated, it is retransmitted to the
file. The UNLOCK SUEFILE statement releases a
locked current subrecord.

C. Physical Record Statements

DBPL/I provides the GET RECORD and WRITE
statements for physical records. These are
special purpose statements intended for use in a
utility mainline for backing up, restoring or
reorganizing one particular data set at a time.
They may be used only by the owner of the data
base.

The GET RBCCSD moves the current physical record
without change to the user's receiving field (for
backul purposes).

The WFITE statement transmits a physical record
from the mainline without change to a data set
(for restoring or reorganizing purposes), WRITE
causes automatic file opening, if necessary.

V. FIELDS

A. Overview

The data items in a record are arranged in fields

and, optionally, field elements.

A "field" is a data item having a field name, an
internal field descriptor and one or more values
per record. Since some fields may have multiple
values per record, an individual data item is
called a field element. This section of the
manual relates primarily to anchor, associated and
subrecord fields, although the GET INDEX KEY
statement may be used for index key fields.
Facilities for subfile control fields and for the
list-cf-keys field in index records are discussed
in Chapter VI of this manual.

A "field name" is an eight-character string value
identifying a field. A mainline written in terms
of a known particular data base may use a
character-string constant in string quotes. A
more generalized mainline may use an
eight-character string variable and assign a value
to it from input data or from a descriptor record
before using it as a field name. The names of the
fields in field descriptor records are given in
the Descriptor File Specification.

PAGE 31

An "internal field descriptor" is either a field
descriptor record in a descriptor region (for data
base fields) or an internal descriptor (for
descriptor fields). The descriptor record for an
anchor field may limit GET access of a FIELD to
those users the file owner has authorized. (PUT
and REPUT may be used only by the file owner).

A "field element value" is always a varying length
character string value in the mainline.
(Internally, it may be fixed- or variable-length
and character or coded form.) There may be some
transformation between the internal value and the
mainline value. If the field descriptor names an
input validation and/or conversion routine or an
output formatting routine, the relevant routines
will be invoked automatically when the field is
accessed.

The internal value of a field element is null
until a value is PUT into it. A GET FIELD
statement retrieves a value even if it is null; a
null value yields a null mainline string value
(unless a formatting routine translates a null
internal value to something non-null such as 'NO
DATA YET'). To handle such a case, the most
general way to retrieve field values is as
follows:

rO 1=1 TO MAX(#FIELD(mfcb,fldname),1);
tE((GIT FILE(mfcb)FIELD(fldname)INTO(var);))
IF LENGIH(var)=0

THEN GO TO FIELD EXRAUSTED;
/*Use field element value in var.*/
END;

FIELD EXHAUSTED:

Dc not attempt GET FIELD more than #FIFLD times or
something like 'NO DATA YET' will be retrieved
after values actually present. The mainline may
determine if the field element is null by testinq
if the length of the mainline string is zero. A
REPUT statement replaces an element with a new
value which may be a null value.

B., Field level Statements and Functions

DEPI/I provides the PUT FIELD, GET FIELD and REPUT
statements for the creation, retrieval, and
maintenance of field elements on anchor and
subfile records. #FIELD is a PL/I function
provided for obtaining the numbers of elements in
a field. The field level statements cause one or

PAGE 32

more field elements to he transmitted individually
between the current record of a file and a
mainline program. A record level statement must
have teen executed to establish a current record
of the file before a field level statement may be
executed.

The PUT FIELD statement is used to create a new
field element in the current record of the file.
It is subsequently transmitted to the file
automatically (no WRITE or REWRITE statement is
needed).

The GET FIEYL statement is used to retrieve a
field element from the current record of the
file.

The REPUT statement is used to replace an existing
primary field element in the current record of the
file. It is subsequently retransmitted to the
file automatically (no REWRITE statement is
needed).

The #FIEtD function calculates the number of
elemerts in a field. It may be used to govern

GETtinq of elements or merely to determine if a
field has any elements or not.

For a field that may not have multiple elements,
the field level statements transmit the single
field element value.

The following discussion applies to fields that
may have multiple elements. PUTting an element
appends it to the right end of the field. GETtinq
of a FIELD element proceeds from left to right
and, when the end of the field is passed, null
values are generated. REPUTting an element
replaces the "current element of the field" which
is the element most recently obtained by a GET
FIELD from the current record of the file. There
is no facility for referring to an element by its
position (subscript) in the field. If it is
necessary to (re)GET an element that is to the
left of the current element, the record may be
(re)R AD, resetting all of the internal current
element counters to the first element of the
fields. If it is necessary to maintain field
elements in scme order depending on their mainline
values (rather than the order in which they are
entered), the following technique may be used (for
ascending sequence):

PAGE 33

LECLARE (OLD,NEW) CHARACTER (maxlen) VARYING:
NEW = expression;
LE ((READ FILE (name) (positioning);

NEXT ELEMENT:
GET FILE (name) FIELD (fieldname) INTO (OLD);

IF LENGTB (OLD) /* IF OLD IS NON-NULL */
THEN DC;

IF OLD > NEW /* GREATER THAN*/
THEN DO; /*INSERT ELEMENT */

EB ((REPUT FILE(name)
FIELD (fieldname) FROM (NEW);));

NEW = OLD; /* FOR PROPAGATION */
END;

GO T C NEXTELEMENT;
END;

DB ((PUT FILE (name) FIELD (fieldname) FROM
(NEW);));

C. Index Field Retrieval

DBPI/I provides a special GET INDEX KEY statement
and the #XREF function for retrieval from index
records. (Such records may not be explicitly
created or maintained by mainline programs). A
READ INDEX statement must have been executed to
establish a current record of an index before a
GET INDEX KEY or #XREF may be executed.

The GET INDEX KEY statement is used to retrieve
the index key field value from the current record
of the index.

The #XREF function calculates the number of cross
references (anchcr or subfile key elements) in the
current record (region) of the index.

The GET FIELD statement and #FIELD will not work
on index record fields. An index record RECLEN
field cannot te retrieved (it doesn't mean much in
a spanned index). The GET INDEX KEY statement is
provided for the index key field. #XREF is
provided (instead of #FIELD) for the cross
reference field element count. The GET INDEX LIST
SET statement (see section VI.B belowl retrieves
the whole cross reference list (instead of an
element at a time).

VI. LISTS

A. Overview

PAGE 34

A "list" of keys is a collection of ascending
internal key elements in main storage, identified

by a mainline list pointer. (The keys are
accessible orly by DBPL/I statements).

A "list pointer" is a PL/I pointer variable
declared in the mainline, set by a DBPL/I GET SET
statement or LIST function reference, and used to
identify a list. A list pointer having the PL/I
NULL pointer value identifies a null (empty)
list.

There are several ways to form lists (see Figure
1) :

1. Read anchor records sequentially and pick
keys,

2. Read sutrecords sequentially from a subfile
and pick keys,

3. Copy an index record cross reference list.

4. Copy a subfile control field.

5. Merge the sutfile control fields from a
series of anchor records specified in a
list,

6. merge the parent keys from a series of
subrecords specified in a list,

7. Get keys sequentially from a list and pick
interesting ones,

8. trop the duplicate keys from a list,

9. Get internal keys sequentially from a list
and generate internal keys for an output
list,

10. Logically combine (AND, OR, or AND NOT)
compatible lists.

The number of keys in a list may be found. Key
elements (in external or internal form) may be
taken from a list. A list may be used to control
REArinq of anchor records. The mainline may
request and get control of any errors in the use
of lists.

Method 1: forming a list of anchor keys:

PAGE 35

ptr=NULL;
-- >DB((READ FIIE(plex) file-positionino;))
I VE((GET FILF(plex) KEY SET(ptr);))

the GET KEY SET may or may not te executed
depending cn the result of GET FIELD statements,
etc.

Method 2: forming a list of subrecord keys:

ptr=NULL;
-- >DB((READ FILE(plex) SUEFILE(scfn)
I file-positioning;))

DB((GET FILE(plex) SUBFILE(scfn)
I KEY SET(ptr);))

It is analogous to method 1.

Method 3:

tE((RAt FIIE(plex) INDEX(ifn)
file-positioninqg;))

CB((GET FILE(plex) INDEX(ifn)
LIST SET(ptr):))

It may be used on any index.

Method 4:

EB((READ FILE(plex) file-positioning;))
rE((GT FILE(plex) SUBFILE(scfn) LIST
SET (ptr) ;))

It copies the multi-element control field as a
list of those subrecords in a subfile that are
dependent cn a particular anchor record, i.e. a
"chain" of related detail records. Note that a
control field is essentially a stored copy of the
result of a whole-subfile search for a particular
parent key value.

Method 5:

ptr2=CCLIST(plex,scfn,ptrl);

It is like method 4 repeated for all the keys in a
Index list with the results all ORed toqether: It
produces a Ccmplete Children List.

Method 6:

PAGE 36

ptr2=CPLIST (plex,ptr l);
cr
ptr2=UPLIST (plex,ptrl);

It reads all the subrecords in a list getting the

parent key field from each one and merging the
parent keys into the output list. The Unique
Parent List function drops duplicate parent kevs:

Complete Parent List does not.

Method 7:

ptr2=FULL;
-->DB((ET LIST(ptrl) KEY <(n)> INTO (var);))
I DB((GET LIST(ptrl) KEY SET(ptr2);))

Where the GET KRE SET may or may not be executed
depending cn the "var" value. Method 7

essentially handles a special case of method 1

when the "file-pcsitioninq" would be governed by a
given list and only the key field would be gotten
to determine selection; for such a case, method 7
is far more efficient because no record level data
base I/C is needed.

Method 8:

ptr2 = ULIST ptrl);

It efficiently produces a new list of unique keys
(no duplicates) without any record level data base
I/0.

Method 9:

CDB(SET IIST(ptr2 SIZE(dim)
LIKE LIST(ptrl);))

--->DB((GET LIST(ptrl) INTERNAL KEY
I INTO(var);))
I-->DB((PUT LIST(ptr2) INTERNAL KEY
II FPCM (expr):))
1---------

It is a very special purpose variation of method
7. It works with unconverted external key values.
If the inner loop is used, it is possible to
generate more than one key for each GET KEY.
Since the output list may receive a multiple or a
fraction of the number of keys in the input list,
a size dimension must be supplied in the SET LIST
LIKE IIST statement estimating the minimum number

PAGE 37

of output keys.

Method 10:

oie

ptr3=LIST(ptr1,'',ptr2)

The LIST function forms a new list in main storage
frcm twoc compatible lists in main storage. The
two argument lists remain accessible for further
combination or other use. The LIST function is
used in retrieving for compound queries. Given
two lists, A and B, the LIST operations provided
are illustrated in Fiqure 2, "Venn Diagram."

When more than two lists have to be combined, the
mainline may use one of the following techniques
(where R is the resultant intersection list):

11 = LIST (A, '8', B);
T2 = LIST (T1, '', C);
B ((FRPEE IIST (Ti))); /*IF DESIRED HERE*/
F = LIST (T2, '', D);
tB ((FREE LIST (T2))); /*IF DESIBIE REP*/

A seccnd possible technique is:

P = LIST (A, '8', B);
F = LIST (R, '', C);
R = LIST (R, 19', D);

A third possible technique is:

F = LIST (LIST (A, '8', B), '8', LIST (C,
1 ', D));

The last two technioues do not retain intermediate
lists.

B. List Statements and Functions

#LIST is a EL/I function provided for obtaining
the number of keys in a list. For example, if L
is a pointer identifying a list and S is a
varying-lenqth character string, the following
DO-grcup would be valid:

to I = 1 TO #LIST (L);
DB ((GET LIST (L) KEY INTO (S);))
PUT SKIP LIST (I, S);
END;

PAGE 38

If it is merely desired to determine if a list has
any elements or not, the following technique is
more efficient than a #LIST function reference:

IF L -= NULL THEN /* LIST HAS HORE THAN ONE
ELEFENT */;

The GET LIST KEY statement moves a list element
key from a list to the user's receiving string.
Any conversion from internal to external form is
done automatically. The GET LIST INTERNAL KEY
statement never converts the list element key
value.

The READ statement with the LIST file positioning
option is used to read the anchor or subfile
record with the next element of a list as its key.
It is more efficient than GET LIST KEY; READ by
KEY because the internal form of the key element
is available for use without conversion.

There are two independent "current elements of a
list": the one most recently obtained by a GET
LIST KEY statement and the one most recently used
by any READ statement under control of the LIST.
A key may be referred to sequentially forwards or
backwards or by its position (subscript) in a
list. The GET or READ current element counter may
be reset by a GET LIST KEY(O) or a READ LIST
KEY(O) statement respectively.

The SET LIST, LIKE LIST, and PUT LIST INTERNAL KEY
statements are for allocating and posting lists
for special purposes.

An explicit FREE LIST statement frees the storage
and NULLs the pointers for the lists specified. A
general FREE LIST statement frees all current
lists but does not NULL any pointers.

The ON LISTERBOR statement is used to establish a
user's list exception routine in the mainline to
which the list processing routines return when an
exceptional list condition occurs (e.g.,
attemptinq to combine incompatible lists). Use of
the statement is optional and several ON LISTEPROR
statements may be executed in a program.

A "list exception routine" must begin with a
statement label (the same label identifier
specified in an ON statement). PL/I (or DBPI/I)
statements may be written following the label to
handle the exceptional condition. These

PAGE 39

statements may reference a binary integer field
named IISTERF.ONCODE (declared automatically by
the DP preprocessor) for assistance in determining
the exceptional condition.

A list exception routine may be terminated in any
manner; no provision is made for returning to the
function reference that raised the exceptional
condition.

VII. RULES AND SYNTACTIC DESCRIPTIONS

The syntax notation used in this manual is a subset of
that used in the TSS PL/I Reference Manual (Form
C28-2045-0) and specified in Section A thereof.

1. A notation variable is shown in lower case
letters, hyphens and, possibly, a digit. All such
variables shown are defined in this manual either
syntactically or semantically.

2. A notation constant denotes the literal occurrence
of the characters shown. It consists either of
all capital letters or of a special character such
as a colon, percent sign, parenthesis, comma or
semicolon.

3. Braces, () , denote that a choice is to be made.

4. Corner brackets, <> , denote options. Anything
enclosed in trackets may appear one time or may
not appear at all.

5. The vertical stroke, I , indicates that a choice
is to be made.

6. An ellipsis, ... , denotes that the contents of
the preceding brackets may optionally occur more
than once in succession.

PAGE 40

'The CCLIST function'

Complete Children LIST builds a list of subrecord keys from
a given parent key list, for a particular subfile, and
returns a pointer value identifying the new list to the
point of invocation. The new list is the complete list of
dependent subrecords (children) formed by merging the parent
record's subfile ccntrol field lists. Any previously
current record and sutrecords that were updated will be
transmitted to the data base. The record identified by the
last (highest) key in the given list will remain as the
current (bat not locked) record; any current subrecords or
index records will remain current. The READ cursor of the
given list will be reset.

Reference:

CCLIST (file-name, ctlfield, parent-list-pointer)

A CCLIST function reference is used as or in an expression;
it is not to be a subargument in a DB preprocessor function
reference. The user may not declare any attributes for the
CCLIST function; the following statement will be generated
automatically:

DECLARE CCIIST ENTRY (,CHAR(8),FTR) RETURNS (PTR);

Arguments:

file-name: specifies the data base file from which parent
records are to be transmitted. It may not be an OUTPUT
file. If the file is not open, it will be opened
automatically. The 'file-name' must be used in at least one
DBPL/I statement elsewhere in the program.

ctlfield: is at expression that specifies the name of the
subfile control field. The value of the expression is
converted to a character string, if necessary, the first
eight characters of which identify the control field.

parent-list-pointer: must be a pointer expression that
identifies a list in main storage of parent keys from the
data base accessed by 'file-name'. It must have been set
when the CCLIST function is invoked.

Result:

The value returned by the CCLIST function is a pointer
identifying the new complete children list. The new list
will be in order of ascending internal subrecord key values

without duplicated values. If none of the parent records
have any dependent subrecords in the subfile, a NULL pointer
value will be returned.

PAGE 41

'The CLOSE Statement'

The CLOSE statement closes a file by disassociating a file
name from the self-describing data set with which it was
associated by an OPEN. It may also specify that the file be
erased.

General Format:

CLOSE FILE (file-name) <RASE> <,FILE(file-name)
<ERASE>>... ;

Syntax Rules:

1. The CLOSE statement must be a subargument in a DB
preprccessor function reference.

2. Several files can be closed by one CLOSE
statement.

General Rules:

1. A closed file can be reopened.

2. Closing an unopened file, or an already closed
file, has no effect unless ERASE is specified.

3. If a file is not closed by a CLOSE statement, it
is automatically closed at the completion of the
program in which it was opened.

4. If the current record and/or subrecords were
LOCATEd or updated, closing will cause them to be
transmitted to the data base, unlocked (if
locked), and disestablished as the current
record(s) of the file.

5. The ERASE specification causes the file to be
erased and uncataloqued. If the file is a
descriptor file, the descriptor region is erased.
If the file is an anchor file, the whole data base
but nct its descriptors is erased. If the file is
an associated file, a subfile or an index file, it
is erased independently. ERASE is only valid for
an UPEATE file.

PAGE 42

'The CPLIST Function'

Complete Parent LIST builds a complete list of parent record
keys from a given subrecord (children) key list and returns
a pointer value identifying the new list to the point of
invocation. The new list has the same number of parent keys
as the number of subrecord ID keys in the given list.
Parent keys will be repeated if more than one of the given
subrecord keys are dependent on a particular parent
record. The sutrecord identified by the last (highest) key
in the given list will remain as the current (but not
locked) subrecord of that subfile; any current or index
records or subrecords of other subfiles will remain current.
The READ cursor of the given list will be reset.

Reference:

CPLIST (file-name, child-list-pointer)

A CPLIST function reference is used as or in an exrression;
it is not to be a subargument in a DB preprocessor function
reference. The user may not declare any attributes for the
CPLIST function the following statement will be generated
automatically:

DECLARE CPIIST FNTRY(,PTR) RETURNS(PTR):

Arguments:

file-name:specifies the data tase file from which subrecords
are to be transmitted. It may not be an OUTPUT file. If
the file is not open, it will be opened automatically. The
file-name must be used in at least one DBPL/I statement
elsewhere in the proqram.

child-list-pointer: must be a pointer expression that
identifies a list in main storage of subrecord keys from the
data base accessed by file-name. It must have been set when
the CPLIST function is invoked.

Result:

The value returned by the CPLIST function is a pointer
identifying the new complete parent list. The new list will
be in order of ascending internal parent key values and may
have repeated values. If the given subrecord list is null,
a NULL pointer value will be returned.

PAGE 43

*The DB Preprocessor Function'

DB analyzes a DBPL/I data base access statement during
compilation and generates, in its place, suitable PL/I
statements for communication with DBPAC. Diagnostic

comments may also be generated.

Reference:

<label:>. . . DE ((<<label: .. , subarqument > ...))

1. One % INCIUDE (DB) preprocessor statement must
have been executed by the PL/I compiler before any
DB preprocesscr function reference is made in a

compilation.

2. Several DB preprocessor function references may be
made in a compilation.

3. A DB preprccessor function reference may be made
only between PL/I statements.

4. When a single DBPL/I statement is to be used as
the THEN-unit or ELSE-unit of a PL/I IF statement,
the unit must be a PL/I DO-END group enclosing the
DB preprocessor function reference.

5. One or more label prefixes may precede a DB
preprccessor function reference. They will
identify the first executable statement generated
for the first subargument.

6. One FINISH statement must be executed by the PL/I
compiler as the last subargument of the last B
preprocessor function reference after all other DB
preprccesscr function references in a
compilation.

Argument:

1. The argument of a DB preprocessor function
reference is a character string delimited by
double enclosing parentheses. Several
subarguments can appear in the argument. Each
must be a data base access statement having its
own terminating semicolon. Blanks and comments

may tbe used freely, as in PL/I, but no PL/I
statements are permitted.

2. One or more label prefixes may precede a

subargument. They will identify the first
executable statement generated for the

PAGE 44

subarqument.

PAGE 45S

'The DUPLIST Function'

DUPIIST builds, in dynamically allocated main storage, a
compressed ccpy of a list of keys and returns a pointer
value identifying the new list to the point of invocation.

Reference:

DUPLIST(list-pointer)

A DUPLIST function reference is used as or in an expression;
it is not to be a sutargument in a DB preprocessor function
reference. The user may not declare any attributes for the
CUPLIST function; the following statement will be generated
automatically:

EECLARE DUFIIST ENZRY(FCINTER) PETURNS(POINTER);

Arqument:

list-pointer: must be a pointer expression that identifies a
list of keys in main storage. It must have been set when
the DUPLIST function is invoked.

Pesult:

The value returned by the DUPLIST function is a pointer
identifying the compressed list copy. A compressed list has
none or more list segments of maximum size followed by the
last or only list seoment allocated to exact length for the
remaining keys and all segments are exactly filled; thus, it
occupies the least possible main storage.

PAGE 46

'The #FIELD Function'

#FIELD calculates the number of elements in a field in the
current record cr subrecord of a file and returns it to the
point of invocation.

Reference:

#FIELD (file-name, field-name)

A #FIELD functicn reference is used as or in an expression;
it is not to be a subargument in a DB preprocessor function
reference. The user may not declare any attributes for the
*FIELD function; the following statement will be generated
automatically:

DECLARE #FIELD EN TRY (,CHARACTER (8)) RETURNS (FIXED
BIN (31);

Arguments:

file-name: identifies a data base file. It may not be an
OUTPUT file. A current record or subrecord of the file or
a sutfile must have been established by a DEPL/I READ
statement when the #FIELD function is executed. Several
#FIELD functicn references may be executed on a current
(sub)record of a file.

field-name: is an expression that specifies the name of the
data base field to be examined. The value of the expression
is converted to a character string, if necessary, the first
eight characters of which identify the field. Any field may
be examined.

Result:

The value returned by the #FIELD function is a binary
integer of maximum precision giving the number of elements
in the field in the current (sub)record of the file. If the
field has a null value, a zero value will be returned.

PAGE 47

'The FINISH Statement'

The FINISH statement causes the DP preprocessor to complete
its analysis of all data base access statements and its
generation of suitable PL/I statements. A RETURN Statement
will be generated which will terminate execution of the
procedure. Diagnostic comments may also be generated.

General Format:

FINISH;

Syntax Rule:

One FINISH statement must be used after all other data
base access statements in a compilation. It must be
the last subargument in a DB preprocessor function
reference.

PAGE 48

'The FREE LIST Statement'

The FREE LIST statement frees main storage previously
dynamically-allccated for one or more lists of

(cross-reference) keys.

General Format:

FREE LIST <(list-pcinter<,list-pointer> ...)>;

Syntax Rules:

1. The FREE LIST statement must be a subarqguent in a

DE preprocessor function reference.

2. Several lists may be explicitly freed by one FREE
LIST statement.

General Rules:

1. If a list-pointer is explicitly specified, it must
be a pointer expression that identifies a list of
keys in main storage. It must have been set when
the FREE LIST statement is executed.

a. If the value of the list-pointer is NULL, no
action will be taken for that list pointer.

b. If the value of the list-pointer is not NULL,
the dynamic main storage for the list of keys
identified by it will be freed and the
list-pointer will be given a NULL pointer
value.

2. If no list-pointer is explicitly specified in the
FREE LIST statement, all dynamic list storage will
be freed. The user's list pointers are not given
NULL values; it is the user's responsibility not
to use them for list identification until they are
reset. If no dynamic list storage has been
previously allocated. this option of the FREE
LIST statement will have no effect.

PAGE 49

'The GET FIELD Statement'

The GET FIELD statement moves a data element value from the
current record or subrecord of a file to the user's

receiving field; it may cause the value to be converted from
an internal forf to a display form.

General Format:

GET FILE (file-name) 1IELD (field-name <, field-name> ...)
INTC (variable <, variable 2 ...)

Syntax Rules:

1. The GET FIEIE statement must be subarqument in a

DE preprocessor function reference.

2. Several data element values can be moved by one
GET FIELD statement. In this case, a
corresvondinq variable must be specified for each
field name.

General Rules:

1. The data element value will be taken from the data
base file specified in the FILE clause. It may
not be an OUTPUT file.

2. A current record or subrecord of the file or a
subfile must have been established by a READ
statement when the GET statement is executed.
Several GET FIELD statements may be executed on a
current (sub)record of the file.

3. The field-name is an expression that specifies the
name of the data base field from which the data
element value is to be obtained. The value of the

expression is converted to a character string, if
necessary, the first eiqht characters of which
identify the field. If the user who executes the
GET FIELD statement is not the owner of the file,
the field-name may not specify a field that the
owner has not authorized the user to GET.

a, If the field is not subdivided into elements,
the data element value (possibly null) will
te taken from the field in the current record
cf the file.

b. If the field is a multiple-element field, the
data element value will be taken from the
next element of the field, in left to riaht
order, following the element taken by the

PAGE 50

previous GET of the FIELD of the current
record of the file. If there has been no
previous GET of the FIELD since the record
was BEAE, the leftmost element is taken
unless the field is null, in which case, a
null element value vill be generated. If a
previous GET of a FIELD since the record was
READ took the last (riqhtmost) element, a
null value will be generated.

4. The variable in the INTO clause specifies the
user's receivinq field. It must be the identifier
of a varying length character string variable
declared by the user. The internal form of the
data element value will be taken as a varying
length character string (of zero length, if the
value is null), converted to display form and

assigned to the variable. If the length of the
display form of the value exceeds the
user-declared maximum length of the variable, the
value will be truncated and an error condition
raised.

PAGE 51

'The GET INEX KEY Statement'

The GET INDEX KEY statement moves the key value from the
current record of an index to the user's receiving field; it
may cause the value to be converted from an internal form to
a display form.

General Format:

GET FILE (file-name) INDEX (indfield) KEY INTO (variable);

Syntax Rule:

The GET INDEX KEY statement must be a subargument in a
DB preprccessor function reference.

General Rules:

1. The FILE clause specifies the data base file from
which an index key value is to be taken. It may
not be an OUTPUT file.

2. The INDEX clause specifies the index file from
which the current index key value is to be taken.
The indfield expression value is converted to a
character string, if necessary, the first eiqht
characters of which identify the indexed field.

3. A current record of the index must have been
established by a READ INDEX statement when the
GET INDEX KEY statement is executed.

4, The variable in the INTO clause svecifies the
user's receiving field. It must be the identifier
of a varying length character string variable
declared by the user. The internal form of the
index key value will be taken as a varying length
character string, converted to display form and
assigned to the variable. If the length of the
display form of the value exceeds the
user-declared maximum length of the variable, the
value will be truncated and an error condition
raised.

PAGE 52

'The GET KEY SET Statement'

The GET KEY SET statement moves the internal key value from

a current record or subrecord of a file to a list of keys in
dynamically allocated main storage and sets a pointer
identifying the list or extends an existent list.

General Format:

GET FILE (file-name) <SUEFILE (ctlfield)> KEY SET
(list-pointer);

Syntax Rule:

The GET KEY SET statement must be a subargument in a EB
preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file from
which a key value is to be taken. It may not be
an OUTPUT file.

2a. If no SUEFILE clause is present, the internal key
value will be taken from the current root
record.

b. A SUEFILE clause specifies that the internal key
value from a current subrecord is to be taken.
The ctlfield expression value is converted to a
character string, if necessary, the first eight
characters of which identify the control field.

3. A current (sub)record must have been established
by a BEAD or READ SUBFILE statement when the GET
KEY SET statement is executed.

4, The list-pointer in the SET clause specifies the
user's pointer identifying the list of keys in
main storage. It must be the identifier of a
pointer variable declared by the user.

4a. If the vser assigns the NULL value to his
list-pointer before executing the GET KEY SET
statement, main storaqe will be dynamically
allocated automatically for a new list, the key
value will be moved there from the current
(sub)record, and the list-pointer value will be
set to identify the list in main storage. The
list remains allocated in main storage until the
user executes a FFEE LIST statement.

PAGE 53

b. Otherwise, the list-pointer should identify a list
of keys in main storaqe to which another
compatible key value is to be avpended. It must
have been set (by the user assiqning NULL and
executing a GET KEY SET statement as described
above) when this GET KEY SET statement is
executed. Tte key value -will be moved from the
current (sub)record. The list-pointer will be
unchanqed.

PAGE 54

'The GET LIST INTERNAI KEY INTO Statement'

The GET LIST INTERNAL KEY INTO statement increments the
internal GET cursor of a list of keys in main storage
identified by a list pointer and moves the indicated key
value in internal form to the user's receiving field.

General Format:

GET LIST (list pointer) INTERNAL KEY INTO (variable);

Syntax Rule:

The GET LIST INTERNAL KEY INTO statement must be a
subargument in a EB preprocessor function reference.

General Rules:

1, The list-rointer must he a pointer expression that
identifies a list of keys in main storage from
which the next key value is to be taken. It must
have teen set when the GET LIST INTERNAL KEY INTO
statement is executed. In the exceptional case of
a list pointer having a NULL pointer value, a null
string value will be generated.

2. The internal GET cursor of the list will be
incremented to indicate that the next element of
the list, in order of ascending internal key
values, is current and will be taken. (If the
internal GET cursor was reset, the element having
the lowest internal key value is current and will
be taken. If the internal GET cursor was on the
last element (highest internal key value), the
cursor will te reset and a null string value will
be generated.)

3. The variable in the INTO clause specifies the
user's receiving field. It must be the identifier
of a varying length character string variable
declared by the user. The internal form of the
key value will be taken as a varying length
character string (of zero length on end of list)
and assicned without formatting to the variable.
If the length of the internal form of the value
exceeds the user-declared maximum length of the
variable, the value will be truncated and an error
condition raised.

PAGE 55

'The GET LIST KFY(0) Statement'

The GET LIST KEP(0) statement resets the internal GET cursor
of a list of keys in main storage.

General Format:

GET LIST (list-pointer) KEY(O);

Syntax Rule:

The GET LIST KEI(O) statement must be a subargument in
a DB preprccessor function reference.

General Rules:

1. The list-pointer must be a pointer expression that
identifies a list of keys in main storaqe whose
GET cursor is to be reset. The list-pointer must
have been set when the GET LIST KEY(O) statement
is executed. In the exceptional case of a
list-pointer having a NULL pointer value, no
action will occur and no error condition will be
raised.

2. The internal GET cursor of the list will be reset
(as it was when the list was built).

PAGE 56

'The GET LIST KEY INTOC Statement'

The GET LIST KEY INTO statement increments or sets the
internal GET curscr of a list of keys in main storage
identified by a list pcinter and moves the indicated key
value to the user's receiving field; it may cause the value
to be converted from internal to display form.

General Format:

GET LIST (list-pointer) KEY <(rel-key)> INTO (variable);

Syntax Rule:

The GET LIST KEY INTO statement must be a subarqument
in a DB preprocessor function reference.

General Rules:

1. The list-pointer must be a pointer expression that
identifies a list of keys in main storage from
which the key value is to be taken. It must have
been set when the GET LIST KEY INTO statement is
executed. In the exceptional case of a list
pointer having a NULL pointer value, a null string
value will be generated.

2a. If nc rel-key is specified, the internal GET
cursor of the list will be incremented to indicate
that the next element of the list, in order of
ascending internal key values, is current and will
be taken. (If the internal GET cursor was reset,
the element having the lowest internal key value
is current and will be taken. If the internal GET
cursor was cn the last element the cursor will be
reset and a null string value will be generated.)

b. If a rel-key expression is specified, its vale
will be converted, if necessary, to a fixed binary
integer of maximum precision.

If rel-kev has a negative value, such as -1, the
internal GET cursor of the list will be
decremented to indicate that the previous element
of the list, in order of internal key values, is
current and will be taken. (If the internal GET
cursor was reset, the element havinq the hiqhest
internal key value is current and will be taken.
If the internal GET cursor was on the first
element, the cursor will be reset and a null
string value will be qenerated.)

If rel-key has a positive value, the internal GET

PAGE 57

cursor of the list will be set to indicate that
rel-key the relative element of the list is
current and will be taken. (If rel-key is zero or
greater than the number of keys in the list, the
cursor will be reset and a null string value will
be generated.)

3. The variable in the INTO clause specifies the
user's receiving field. It must be the identifier
of a varying length character string variable
declared by the user. The internal form of the
key value will be taken as a varving length
character string converted to display form and
assigned to the variable. If the length of the
display form of the value exceeds the
user-declared maximum length of the variable, the
value will be truncated and an error condition
raised.

PAGE 58

'The GET LIST KEY SET Statement'

The GET LIST KEY SET statement moves the current internal

key value from a list of keys identified by a list pointer

to a new list in dynamically allocated main storage and sets

a pointer identifying the nev list or extends an existent

list.

General Format:

GET LIST (list-pcinter) KEY SET (new-list-pointer):

Syntax Rule:

The GET LIST KEY SET statement must be a subargument in
a DB preprocessor function reference.

General Rules:

1. The list-pointer must be a pointer expression that
identifies a list of keys in main storage having a
non-zero GET cursor indicating a current key.

2. The internal key value will be taken from the
current element of the list indicated by the
internal GET cursor. The GET cursor will be
unchanged.

3. The new-list-pointer in the SET clause specifies
the user's pointer identifyinq the new list of
keys in main storage. It must be the identifier
of a pointer variable declared by the user.

3a. If the user assigns the NULL value to his
new-list-pointer before executing the GET LIST KEY
SET statement, main storaqe will be dynamically
allocated automatically for a new list, the key
value will be moved there, and the
new-list-pointer value will be set to identify the
new list in main storage. The new list remains
allocated in main storage until the user executes
a FREE IIST statement,

3b. Otherwise, the new-list-pointer should identify a
list of keys in main storage to which another
compatible key value is to be appended. It must
have been set when this GET LIST KEY SET
statement is executed. The key value will be
moved and the new-list-pointer will be
unchanged.

PAGE 59

'The GET LIST SIT Statement'

The GET LIST SET statement moves a list of keys from the

current record of an index or from a subfile control field

in the current root record to dynamically allocated main

storage and sets a pointer identifying it.

General Format:

GET FILE(filename) <INEIX(indfield)>LIST SET (list-pointer)
<SUEFILE(ctlfield)>

Syntax Rule:

The GET LIST SET statement must be a subargument in a

DB preprocessor functicn reference.

General Rules:

1. The FILE clause specifies the data base file from
which the list of keys is to be taken. It may not
be an OUTPUT file.

2a. If an INDEX clause is specified, a current index
reccrd must have been established by a READ INDEX
statement when the GET INDEX LIST SET statement is
executed. The INDEX clause specifies the index
file from which the list of (cross-reference) keys
is to be taken. The indfield expression value is
converted to a character string, if necessary, the
first eight characters of which identify the
indexed field.

2b. If a SUEFIE clause is specified, a current root
record must have been established by a READ
statement when the GET LIST SET statement is
executed. The ctlfield expression value is
converted to a character string, if necessary, the
first eight characters of which identify the
control field from which the list of keys
(children) is to be taken. If the user who
executes the GET SUEFILE LIST SET statement is not
the owner of the file, the ctlfield may not
specify a ccntrol field that the owner has not
authorized the user to GET.

2c. If neither an INDEX nor a SUBFILE clause is
specified, the FILE must be an INPUT file opened
with a TITLE for independent access to a
particular inverted index file and a current
record must have been established by a READ
statement when the GET LIST SET statement is
executed. Tte list of (crcss-reference) keys will

PAGE 60

be taken.

3. The list-pcinter in the SET clause specifies the

user's pointer to be set to identify the list of

keys in main storage. It must be the identifier

of a pointer variable declared by the user.

a. If the list of keys field of the current

record is null, the list-pointer will be

given a NUIL pointer value. (This occurs for

the SUBFILE case when the control field is

null indicating no subordinate (children)

subrecords.)

b. Ctherwise, main storage will be dynamically
allocated automatically for the list, the
list of keys will be moved there from the

current record, and the list-pointer value

will be set to identify the list in main

storage. The list remains allocated in main

storage until the user executes a FREE LIST

statement.

PAGE 61

'The GET RECORD Statement'

The GET RECORD statement moves a physical record in internal

form from the current record of a file to the user's

receiving field.

General Format:

GET FILE (file-name) RECORD INTO (variable);

Syntax Rule:

The GET RECORD statement must be a subargument in a DB

preprocessor function reference.

General Rules:

1. The physical record will be taken from the current
record of the file specified in the FILE clause.
It must be an UPDATE or INPUT file owned by the
user who executes the GET RECORD statement.

2. A current record of the file must have been
established by a READ statement when the GET
statement is executed. Several GET statements may
be executed on a current record of the file.

3. The variable in the INTO clause specifies the
user's receivina field. It must be the identifier
of a structure or fixed-length character string
variable declared by the user. The internal
self-defining physical record will be moved into
the variable without any conversion. No receiving
field length checking will be done. (A GET FIELD
'RECLEN' statement may be used for this purpose.)

PAGE 62

'The % INCLUDE IISRMAC (DB) Preprocessor Statement'

The W INCLUDE LISRMAC (LB) preprocessor statement causes the

text of the DB preprocessor function to be taken from the

system source library during compilation, incorporated in

the source program and activated.

General Format:

% INCLUDE IISRMAC (DB);

Syntax Rule:

Only one X INCLUM EtB preprocessor statement may be
used in the source text for a compilation, It must
immediately follow the beQinning PROCEDURE statement,
before any other statements, if the compilation
contains DE preprocessor function references for data
base access statements.

PAGE 63

'The LIST Function'

LIST derives a new list of (cross-reference) keys from two
given lists of keys and returns a pointer value identifyinq
the new list to the Tcint of invocation. The new list may
be the union or intersection of the given lists or the
sublist of the first given list excluding the second.

Reference:

LIST (list-pointer-1, operator, list-pointer-2)

A LIST function reference is used as or in an expression; it
is not to be a subargument in a DB preprocessor function
reference. The user may not declare any attributes for the
LIST function; the following statement will be generated
automatically:

DECLARE LIST ENTRY (POINTER, CHARACTER(1), POINTER)
RETURS (PCINTER);

Arguments:

Each of the twa list-pointer arguments must be a pointer
expression that identifies a list of keys in main storage.
Each must have been set when the LIST function is invoked.
The lists of keys identified must be compatible (havinq the
same internal key element length, etc.),

The operator argument is an expression that specifies the
list operation to derive the new list. The value of the
operator will he converted, if necessary, to a one-character
string. The value must be:

logical OR, ',', specifying the union,

logical ANE, ', specifying the intersection, or

minus sign, '-', specifying the sublist of the first
list excluding the second list.

Result:

The value returned by the LIST function is a pointer
identifying the new list. The new list will be in order of
ascending internal key values without duplicated key values
(unless there are duplicates in one of the argument lists).
If the new list is null, the value returned may be assigned
to one of the argument list pointers; however, the argument
list would then be lost to the mainline (unless the user had
assigned its pcinter value to arother pointer previously)
and could not be explicitly freed (but FREE LIST; would free
it and all other lists).

PAGE 64

'The #LIST Function'

#LIST calculates the number of (cross-reference) keys in a
list of keys identified by a list pointer and returns it to
the point of invoccaticn.

Reference:

#LIST (list-pointer)

A #LIST function reference is used as or in an expression;
it is not to be a subargument in a DE preprocessor function
reference. The user may not declare any attributes for the
#LIST function; the following statement will be generated
automatically:

DECLARE #LIST ENTRY (POINTER) RETURNS (FIXED
BINAPY(31));

Argument:

The list-pointer argument must be a pointer expression that
identifies a list of keys in main storage. It must have
been set when the #LIST function is invoked.

Result:

The value returned by the 1IIST function is a binary integer
of maximum precision giving the number of keys in the list
identified by the list-pointer argument. If the
list-pointer has a NULL pointer value, a zero value will be
returned.

PAGE 65

'The LOCATE Statement'

The locate statement, which applies to OUTPUT or DIRECT
UPDATE files, causes formation of a new current record
having a key field and having all other fields null; it may
also cause transmission of the previously current record to
the data base.

General Format:

LOCATE FILE (file-name) KEYFFOM .(expression);

Syntax Rule:

The LOCATE statement must be a subargument in DB
preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file to
which the record is to be subsequently
transmitted. It must be owned by the user who
executes the LOCATE statement. It may not be an
INPUT or SEQUENTIAL UPDATE file.

2. If the file is not open, it is opened
automatically.

3. The value of the expression in the KEYFROM clause
is converted to a varying length character string,
if necessary, validated and/or converted to an
internal form.

a. If the file has the SEQUENTIAL OUTPUT
attributes, the internal key is checked for
ascending sequence and subsequently used as
the key of the record when it is transmitted
to the data base.

b. If the file has the DIRECT attribute, a READ
FEY is attempted using the internal key. If
the key is found, a duplicate key error
condition is raised and the LOCATE statement
has the effect of the READ KEY statement. If
the key is not found, it is subsequently used
as the key of the record when it is
transmitted to the data base.

4. After execution of the LOCATE statement,
subrecords may be LOCATEd and values may be PUT
into fields (cther than the key) of the record for
subsequent transmissicn to the data base, which
will cccur immediately before the next LOCATE,

PXGE 66

READ, CLOSE or automatic close operation on the
file.

PAGE 67

'The LOCATE SUBFILE Statement'

The LOCATE SUEFILE statement causes formation of a new
current subrecord having a Wey field and a parent keyfield
and having all cther fields null; it also causes the new key
to be automatically entered in the parent record control
field; it may also cause transmission of the previously
current subrecord of the sutfile.

General Format:

LOCATE FILE (file-name) SUEFILE (ctlfield);

Syntax Rule:

The LOCATE SUBFILE statement must be a subarqument in a
DB preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file to
which the subrecord is to be subsequently
transmitted. It must be owned by the user who
executes the LOCATE SUBFILE statement. It may
not be an INFUT file.

2. A current record of the file must have been
established when the LOCATE SUBFILE statement is
executed. Several LOCATE SUEFILE statements for
one or more subfiles may be executed on a current
record of the file.

3. The ctlfield is an expression that specifies the
name of the subfile control field. The value of
the expression is converted to a character string,
if necessary, the first eight characters of which
identify the control field.

4. After execution of the LOCATE SUBFILE statement,
values may be PUT into fields of the subrecord for
subsequent transmission to the data base, which
will occur immediately before the next LOCATE
SUBFILE or READ SUBFILE on this subfile or before
the next CLOSE or automatic close on the file.

PAGE 68

'The ON Statement'

The ON statement specifies what action is to be taken when
an interruption results from the occurrence of the specified
error condition.

General Format:

ON <ERRORFILE(file-name)> <SYSTEM > ;
<LISTEFROR > <GO TO label>

Syntax Rule:

The ON statement must be a subargument in a DB
preprocesscr function reference.

General Rules:

1. The ON statement determines how an error occurring
for the specified condition is to be handled.
Whether the error is handled in the standard DB
fashicn or by a user-supplied method is determined
by the action specification in the ON statement,

as follows:

a. If the action specification is SYSTEM, the
standard DB action is taken. For most
conditicns, the system simply posts the
CNCODE field and raises the ERROR condition.
(Note that the standard DB action is always
taken if an interruption occurs and no ON
statement for the condition is in effect.)

b. If the action specification is GO TO, the
user has supplied his own error-handling
action at label. Control is not transferred
to latel when the ON statement is executed;
ccntrol is transferred only when an error
results from the occurrence of the specified
condition.

2. The action specification established by executing
an ON statement remains in effect unless it is
over-ridden by the execution of another ON
statement specifying an action for the same
condition.

PAGE 69

'The OPEN Statement'

The OPEN statement opens a file by associating a file name
with a DATA BASE. It may also specify attributes for the
file.

General Format:

OPEN FILE (file-name) <TITLE (expression)> <access>
<function>
<,FILE(file-name) <TITLE(expression)> <access>
<function>>...,,

where "access" is:
DIRECT I SEQUENTIAL

and "function" is:
INPUT I OUTPUT I UPDATE

Syntax Rules:

1. The OPEN statement must be a subargument in a DB

preprccesscr function reference.

2. Several files can be opened by one OPEN
statement.

General Eules:

1. If a file is not opened by an OPEN statement, it
is automatically opened when a READ or LOCATE
statement for the file is first executed.

2. Opening an already opened file by an OPEN
statement causes it to be closed and reopened.

3. If the TITLE cption is specified, the value of the
expression is converted to a character strino the
first eight characters of which identify the data
base to be associated with the file. If the TITLE
option is nct specified, the file-name is taken
to identify the data base.

4. If no access attribute is specified, DIRECT is the
default unless a WRITE statement on the file is
used in the same compilation, thus implying the
SEQUENTIAL attribute.

5. If a function attribute is specified, it
determines the direction of data transmission
permitted for the file. If no function attribute
is specified, it is implied from the usage of
other data base statements on the same file in the

PAGE 70

compilation (e.g., EEPUT implies UPDATE), If no
other data base statements on the same file appear
in the compilaticn, the default is INPUT. The
only user permitted to access and OUTPUT or UPDATE
file is the owner of that file.

PAGE 71

'The PUT FIELD Statement'

The PUT FIELD statement moves a data element value to the
current record or sutrecord of a file for subsequent
transmission to the data base; it may cause the value to be
validated and/cr converted to an internal form and it may
also cause a cross-reference to be automatically entered in
an index file.

General Format:

PUT FILE (file-name) FIELD (field-name<,field-name> ...)
FROM (expression<, expression> ...);

Syntax Rules:

1. The PUT FIELD statement must be a subargument in a
DE preprocessor function reference. 'The READ
Statement'

2. Several data element values can be moved by one
PUT FIELD statement. In this case, a
corresponding expression must be specified for
each field-name.

General Rules:

1. The FILE clause specifies the data base file to
which the data element value is to be subsequently
transmitted. It must be an OUTPUT or UPDATE file
owned by the user who executes the PUT statement.
It may not be an associated file or an index
file.

2. A current exclusive record or subrecord (depending
on the field-name) of the file or subfile must
have been established when the PUT statement is
executed. Several PUT statements may be executed
on a current exclusive (sub)record of the file.

3. The field-name is an expression that specifies the
name of the data tase field into which the data
element value is to be moved. The value of the
expression is converted to a character string the
first eight characters of which identify the
field. The field-name may not specify the key
field of the record or any other read only field.
The PUT statement moves a value to a field element
that had no previous value.

a. If the field is not subdivided into elements,
it must have had a null value before the PUT
statement is executed to give it a value.

PAGE 72

b. If the field is a multiple-element field, a
new element will be added at the right end of
the field.

4. The expression in the FROM clause specifies the
data value to be given to the field element. The
value of the expression is converted to a varying
length character string, if necessary, validated
and/or converted to an internal form and moved
into the current record of the file. (If the data
base field element is variable-length, other
fields are automatically shifted to make room.)
The varying length character string value after
any conversion to an internal form must have a
length greater than zero; i.e., a null string is
an invalid data value for a PUT statement.

5. If the data base field has an inverted index file,
a cross-reference of the internal data element
value to t~e key of the (sub)record will be
automatically entered in the inverted index
file.

6. The (sub)record with the new data element value
will be transmitted to the data base when an
UNLOCK statement for the (sub)file is executed or
immediately before the next LOCATE or REAt on the
(sub)file or immediately before the next CLOSE or
automatic close operation on the file.

PAGE 73

'The PUT LIST INTERNAL KEY FROM Statement'

The PUT LIST INTERNAL KEY FROM statement moves an internal
key value to extend a list of keys in main storage.

General Format:

PUT LIST (list-pointer) INTERNAL KEY FROM (expression
<,expression>...);

Syntax Rules:

1. The PUT LIST INTERNAL KEY FROM statement must te a
subargument in a DB preprocessor function
reference.

2. Several internal key values can be moved by one
PUT LIST INTIENAL KEY FROM statement.

General Rules:

1. The list-pcinter in the LIST clause specifies the
user's pointer identifying the list of keys in
main storage to which the internal key value is to
be moved. It must have been set when the PUT LIST
INTERNAL KEY FROM statement is executed. In the
case of a list pointer having a NULL pointer
value, a list error condition will be raised.

2. The expression in the FROM clause specifies the
internal key value to be moved to the list. The
value of the expression is converted to a varying
length character strinq which must be the same
length as the list element size. If the length is
different or zero (null) an error condition will
be raised.

PAGE 74

'The READ Statement'

The READ statement causes a parent record or a subrecord to
be transmitted from the data base and established as the
current record of the file (or as the current subrecord of
a subfile); it may also cause transmission of the previously
current record (or subrecord of a subfile) to the data
base.

*When READing according to a LIST of subrecord ID keys.

General Format:

READ FILE (file-name) <file-positioning> <NOLOCK>;

where file-positioning may be:

BACKWARDS I KEY(expression)
LIST(list-pointer) <(KEY (rel-key)> |
PER SUBFIIE (ctlfield)

Syntax Rule:

The READ statement must be a subargument in a rB
preprocesscr function reference.

General Rules:

1. The FILE clause specifies the data base file from
which the record is to be transmitted. It may not
be an OUTPUT file.

2. If the file is not open, it will be opened
automatically unless BACKWARDS or PER SUEFILE is
specified.

3a. If no file positioning option is specified, the
next sequential record , following the one

previcusly read, will be transmitted. If the file
is newly opened, the record having the lowest
internal key value will be transmitted.

b, If the BACKWARDS file-positioning option is
specified, the previous sequential record, in the
order of internal key values, preceding the one
previously read will be transmitted. If the file
is newly opened, a file positioning error
condition will be raised.

c. If the KEY file-positioning option is specified,
the value of the expression will be converted to a
varying length character string, validated and/or
converted to an internal form and used to

PAGE 75

determine which record will be transmitted. If
the key cannot be found, a key error condition
will be raised, but the record having the next
lower internal key value will be transmitted.

d. If the LIST file-positioning option is specified,
the file may not be an index file. The
list-pointer must be a pointer expression that
identifies a list of anchor or subrecord keys in
main storage to control the READing. It must have
been set when the READ statement is executed.
The keys in the file list identified must be
compatible with the internal anchor keys of the
file, or witt the subrecord keys of one of its
subfiles. In the latter case the list determines
which subfile will be accessed for a subrecord to
be made current. In the case of a list-pointer
having a NULL pointer value, a key error condition
will be raised and no record will be
transmitted.

If the LIST clause is not followed by a KEY
clause, the internal READ cursor of the list will
be incremented to indicate that the next element
of the list, in order of ascending internal key
values, will be used to determine which
(sub) record will be transmitted. (If the internal
READ cursor was reset, the element having the
lowest internal key value will be used. If the
internal PEAD cursor was on the last element, the
cursor will be reset, a key error condition will
be raised, and no (sub)record will be
transmitted.)

If the LIST clause is followed by a KEY clause,
the value of the rel-key expression will be
converted to a fixed binary integer of maximum
precision.

If rel-key has a value of zero, the internal READ
cursor of the list will be reset. No (sut)record
will be transmitted and no error condition will be
raised.

If rel-key has a negative value, such as -1, the
internal READ cursor of the list will be
decremented to indicate that the previous element
of the list, in order of internal key values, vill
be used to determine which (sub)record will be
transmitted. (If the internal READ cursor was
reset, the element having the highest internal key
value will be used. If the internal READ cursor
was on the first element the cursor will be reset,

PAGE 76

a key error condition will be raised, and no
(sub)record will be transmitted.)

If rel-ke v has a positive value the internal READ
cursor of the list will be set to indicate that
the element in the rel-key position of the list
will be used to determine which (sub)record will
be transmitted. (If rel-key is greater than the
number of keNs in the list, the cursor will be
reset, a key error condition will be raised, and
no (sub)record will be transmitted.)

e. If the PEP SUBFILE file-positioning option is
specified, the parent record of a current
subreccrd will be transmitted. The value of the
ctlfield expression will be converted to a
character string the first eight characters of
which identify the subfile control field. A
current subrecord of the subfile must have been
established by a READ SUBFILE statement when the
READ PER SUEFIIE statement is executed. The
internal parent key field value on the subrecord
will be used to determine which record will be
transmitted.

f. No KEYTO option is provided. A GET FIELD
statement, following a BEAD statement, may be
used for this purpose.

4. Any READ statement referring to an UPDATE file
will cause the record to be locked for exclusive
use unless the NOLOCK option is specified. A
locked record cannot be READ by any other task
until it is unlocked. Any attempt to READ a
record locked by another task results in a wait.
Subseauent unlocking is accomplished by the
locking task through the execution of an UNLOCK,
READ, LOCATE, CLOSE or implicit close operation on
the file.

PAGE 77

'The READ INDEX Statement'

The READ INDEX statement causes an index record to be
transmitted from the data base and established as the
current record cf the index.

General Format:

READ FILE (file-name) INDEX (indfield) <index-positioning>;

where index-positioning may be:

BACKWARDS I KEY(expression)

Syntax Rule:

The READ INDEX statement must be a subargument in a DB
preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file from
which an index record is to be transmitted. It
may nct be an OUTPUT file.

2. If the file is nct open, it will be opened
automatically unless BACKWARDS is specified.

3. The INDEX clause specifies the index file from
which the index record is to be transmitted. The
indfield expression value is converted to a
character string, if necessary, the first eight
characters of which identify the indexed field.
If the user who executes the READ INDEX statement
is not the owner of the file, the indfield may not
specify a field that the owner has not authorized
the user to GET.

4a. If nc index-rcsitioning option is specified, the
file must be an INPUT file. The next sequential
index record, following the one previously read,
will be transmitted. If the index file has not
been previously read, the record having the lowest
indexed field value will be transmitted.

b. If the BACKIARDS index-positioning option is
specified, the file must be an INPUT file. The
previcus sequential index record preceding the
one previously read will be transmitted. If the
index file has not been previously read, a file
positioning error condition will be raised.

PAGE 78

c. If the KEY index-positioning option is specified,
the file may be an INPUT or UPDATE file. The
value of the expression will be converted to a
varying length character string, if necessary,
validated and/or converted to an internal index
key form and used to determine which index record
will te transmitted. If the key cannot be found,
a key error will be raised, but the index record
having the next lower internal index key value
will te transmitted.

d. No FFYTO option is provided. A GET INDEX KEY
statement, following a BEAL INDEX statement, may
be used for this purpose.

5. A REAE INDEX statement never locks an index record
for exclusive use.

PAGE 79

'The READ SUBFIIE Statement'

The READ SUBFILE statement causes a subrecord to be
transmitted from the data base and established as the
current subrecord of the subfile.

General Format:

READ FILE (file-name) SUEFILE(ctlfield)<subfile-positioninq>
<NOLOCK>;

where subfile-pcsiticning may be:

BACKWARDS I KEY(expression)

Syntax Rule:

The READ SUEFILE statement must be a subarqument in a
DB preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file from
which a subrecord will be transmitted. It may not
be an OUTPUT file.

2. If the file is not open, it will be opened
automatically unless BACKWARDS is specified.

3. The SUEFILE clause specifies the subfile from
which the subrecord is to be transmitted. The
ctlfield expression value is converted to a
character string, if necessary, the first eight
characters of which identify the subfile control
field. If the user who executes the READ SUFILE
statement is not the owner of the file, the
ctlfield may not specify a subfile that the owner
has noct authorized the user to READ.

4.a If no subfile-positioning option is specified, the
file must be an INPUT file. The next sequential
subrecerd following the one previously read, will
be transmitted. If the subfile has not been
previously read, the subrecord having the lowest
subrecord ID key value will be transmitted.

4.b If the BACKWARDS subfile-positioning option is
specified, the file must be an INPUT file. The
previous sequential subrecord, preceding the one
previocuslv read will be transmitted.

4.c If the KEY sutfile-positioning option is
specified, the file may be an INPUT or UPDATE

PAGE 80

file. The value of the expression will be
converted to a varying length character string,
if necessary, converted from numeric character to
binary (24, 7). internal subrecord key form and
used to determine which subrecord will be
transmitted. If the subrecord key cannot be
found, a key error condition will be raised, but
the subrecord having the next lower internal
subrecord key value will be transmitted.

4.d No LIST subfile-positioning option is provided for
the READ SUBFIIE statement; the regular READ with
LIST file-positioning may be used for this purpose
because the list determines if and which subfile
is to be accessed.

4.e No subfile-pcsitioning option is provided for
reading the region of subrecords dependent on the
current root record; GET SUBFILE LIST SET followed
by READ LIST statements (with forwards or
backwards positicning) are very flexible for this
purpose.

4.f No KEYSO option is provided. A GET FIELD
statement, following a READ statement, may be
used fcr this purpose.

5. A REAt SUBFILE statement referring to an UPDATE
file will cause the subrecord to be locked for
exclusive use unless the NOLOCK option is
specified. A locked subrecord cannot be READ by
any other task until it is unlocked. Any attempt
to READ a subrecord locked by another task results

in a wait. Subsequent unlocking is accomplished
by the locking task through the execution of an
UNLOCK SUEFIIE, READ SUBFILE, or LOCATE SUBFILE
operation on the subfile or a CLOSE or implicit
clcse operation on the file.

PAGE 81

'The REPUT Statement'

The REPUT statement rerlaces a data element in the current
record or sutrecord of an UPDATE file for subsequent
retransmission to the data base; it may cause the value to
be validated and/or converted to an internal form and it may
also cause a crcss-reference to be automatically deleted and
another entered in an index file. The REPUT statement may
be used to delete a whole record or subrecord and all
cross-references to it in index files.

General Format:

REPUT FILE(file-name) FIELD(field-name<, field-name> ...)
FBOM(expressicn<, expression> ...);

Syntax Rules:

1. The REPUT statement must be a subargument in a DB
preprccesscr function reference.

2. Several data element values can be replaced by one
.REPUT statement. In this case, a corresponding
expression must be specified for each
field-name.

General Rules:

1. The FILE clause specifies the data base file to
which the data element value is to be subsequently
retransmitted. It must be an UPDATE file owned by
the user who executes the REPUT statement. It may
not be an associated file or an index file.

2. A current exclusive record of the file must have
been established when the REPUT statement is
executed. Several REPUT statements may be
executed on a current exclusive record of the
file.

3. The field-name is an expression that specifies the
name of the data tase field whose data element
value is to be replaced. The value of the
expression is converted to a character string the
first eight characters of which identify/ the
field.

a. If the field is the key field of an anchor record,
the expression in the FROM clause must have a null
value (xero length) and the whole root record and
all of its dependent subrecords in all sutfiles of
the FILE will be deleted.

PAGE 82

b. If the field is the key field of a subrecord, both
the subreccrd and its parent record must be
current. The expression in the FROM clause must
have a null value (zero length) and the whole
subrecord will he deleted.

c. Otherwise the field-name may not specify a
read-cnly field.

If the field is not subdivided into elements, its
value will be replaced. If the field is a
multiple-element field, the element taken by the
last GET of the FIELD since the current
(sub) record cf the file was READ will have its
value replaced. If no element was fpimd fpr tie
GET FIELD or if no GET of the FIELD of the
current (sub)record of the file was executed, an
errcr condition is raised.

4. The expression in the FROM clause specifies the
new data value to be given to the field element.
The value of the expression is converted to a
varying length character string, validated and/or
converted to an internal form and moved into the
current (sut)record of the file. (If the data
base field element is variable-length and the new
value's length is different from the old, other
field elements are automatically shifted as
necessary.)

5a. If the data base field is the key field of the
anchor record and the expression in the FROC
clause has a null value, all crcss-references to
the key of the parent record and its dependent
subrecords will be automatically deleted from all
index files fcr the file specified in the FILE
clause.

b. If the data base field is the ID key field of a
subrecord and the expression in the FROM clause
has a null value, all cress-references to the ID
key of the subrecord will be automatically deleted
from all index files for the subfile.

c. If the data base field has an index file, the
cross reference of the old internal data element
value will he automatically deleted, and a
cross-reference of the new internal data element
value to the key of the record will be
automatically entered in the index file.

6. The (sub)record with the new data element value
will be retransmitted to the data base when an

PAGE 83

UNLOCK statement for the (sub)file is executed or
irmediately before the next LOCATE or RIAE on the
(sub) file or imediately before the next CLOSE or
automatic close operation on the file.

PAGE 84

'The SET LIST IIKE LIST Statement'

The SET LIST LIKE LIST statement dynamically allocates main
storage for a new list to later contain an estimated number
of keys, copies the key field name and conversion routine
name etc., fror an existing list, and sets a pointer

identifying the new list.

General Format:

SET LIST (new-list-pointer) SIZE (dimension) LIKE LIST

(list-pointer);

Syntax Rule:

The SET LIST LIKE LIST statement must be a subarqument
in a DB preprocessor function reference.

General Rules:

1. The list-pcinter in the LIKE LIST clause must be a
pointer expression that identifies a list of keys
in main storage to be referenced for prefix
inforration such as key element length etc. In
the exceptional case of a list pointer having a
NULL pointer value, a NULL pointer value will be
returned.

2. The SIZE clause specifies an estimate of the
number of keys that will subsequently be put into
the new list. For example, it could be the #LIST
count of the existing list or .a multiple of it.
The dimension expression value will be converted,
if necessary, to a fixed binary integer of maximum
precision and used to govern the allocation of the
first segment of the new list.

3. The new-list-pointer in the SET LIST clause
specifies the user's pointer identifying the new
list of keys in main storage. It must be the
identifier of a pointer variable declared by the
user. Regardless of its former value, it will be
set to identify the new list of keys in main
storage. The new list remains allocated in main
storage until the user executes a FREE LIST
statement.

PAGE 85

'The ULIST Function'

ULIST builds a copy of a list of keys omitting duplicated
key values and returns a pointer value identifying the new
list to the point of invocation. If The given list has only
unique key values, UIIST returns the given list pointer
without copying the list.

Refernece:

ULIST(list-pointer)

A ULIST function reference is used as or in an expression;
it is not to be a suhargument in a DB preprocessor function
reference. The user may not declare any attributes for the
ULIST function; the following statement will be generated
automatically:

DECLARE ULIS ENTEY(PCINTFE) RETURNS(POINTER);

Argument:

The list-pointer argument must be a pointer expression that
identifies a list of keys in main storage. It must have
been set when the ULIST function is invoked.

Result:

The value returned by the ULIST function is a pointer
identifying the new list having only unique key values.
However, if the argument list is found to not have any
duplicated key values, its list pointer is simply returned
(this always happens when the argument list is null or has
only one key).

PAGE 86

'The UNLOCK Statement'

The UNLOCK statement makes a locked current record or

subrecord available to other tasks for READ operations; it
may cause transmissicn of the current record or subrecord to
the data base.

General Format:

UNLOCK FILE (file-name) <SUEFILE(ctlfield)>;

Syntax Rule:

The UNLOCK statement must be a subargument in a DB
preprocessor function reference.

General Rules:

1. The FILE clause specifies the data base file whose
current record is to be unlocked. The file must
have the UPDATE attribute.

2. A reccrd can be unlocked only by the task which
locked it.

3a. If no SUBFILE clause is present, the current root
record will be unlocked.

3b. A SUEFILE clause, if present, specifies that the
current subrecord of a subfile is to be unlocked.
The ctlfield expression value is converted to a
character string the first eight characters of
which identify the control field.

4. If the locked current (sub)record has been updated
by a PUT or REPUT FIELD statement, the UNLOCK
statement will cause it to be retransmitted to the
data base. It continues to be the current
(sub)record of the file, but PUT and REPUT
statements are invalid until another current
(sub)record is established.

5. Unlocking a (sub)record that was READ with the
NOLOCF option or that has already been UNLOCKed
has nc effect.

PAGE 87

'The UPLIST Function'

Unique Parent LIST builds a list of the unique parent (root)
record keys from a civen sub-record (children) key list and
returns a pointer value identifying the new list to the
point of invocation. The new list has the same number of
parent keys as the number of subrecord keys in the given
list. Parent keys will nct be repeated, even if more than
one of the given subrecord keys are dependent on a
particular parent record. A previously current and updated
subrecord of the sutfile referenced by the given list will
be transmitted to the data base. The subrecord identified
by the last key in the given list will remain as the current
subrecord of that sub-file; any current root or index
records or subrecords of other sutfiles will remain current.
The READ cursor of the given list will be reset.

Reference:

UPLIST (file-name, child-list-pointer);

An UPLIST function reference is used as cr in an expression;
it is not to be a subarqument in a DEB preprocessor function
reference. The user may not declare any attributes for the
UPLIST function; the followinq statement will be generated
automatically:

DECLARE UPIIST ENTRY(,PTR) RETURNS (PTR);

Arguments:

The file-name argument specifies the data base file from
which subrecords are to be transmitted. It may not be an
OUTPUT file. If the file is not open, it will be opened
automatically. The file-name must be used in at least one
DBPL/I statement elsewhere in the program.

The child-list-pointer argument must be a pointer expression
that identifies a list in main storage of subrecord keys
from the data base accessed by file-name. It must have been
set when the UPLIST function is invoked.

Result:

The value returned by the UPLIST function is a pointer
identifying the new unique parent list. The new list will
be in order of ascending internal parent key values without
duplicated values. If the given subrecord list is null, a
NULL pointer value will te returned.

PAGE 88

'The WRITE Statement'

The WRITE statement causes a physical record (presumably,
from a backup file) to be transmitted to a SEQUENTIAL OUTPUT
file.

General Format:

WRITE FILE (file-name) FROM (variable);

Syntax Rule:

The WRITE statement must be a subargument in a DB
preprocesscr function reference.

General Rules:

1. The FILE clause specifies the file to which the
record is to be transmitted. It must be a
SEQUEVTIAL OUTPUT file owned by the user who
executes the WRITE statement.

2. If the file is not open, it is opened
automatically with the SEQUENTIAL OUTPUT
attributes.

3. The variable in the FROM clause, declared and
filled by the user, contains the record to be
written. It must have the self-defining format of
an internal variable-length record. Its key field
value (without validation or conversion) must be
higher, in order of ascending internal values,
than that of the record transmitted by the
previous WRITE statement for the file. (The
record does not become the current record of the
file for purposes of PUT statements.)

PAGE 89

'The #XREF Function'

#XREF calculates the number of cross reference keys in the
current record of an index and returns it to the point of
invocation.

Reference:

#XREF (file-name, indfield)

A #XREF function reference is used as or in an expression;
it is not to be a subarqument in a DB preprocessor function
reference. The user may not declare any attributes for the
#XREF function; the fcllowinq statement will be generated
automatically:

DECLARE #XREF ENTrY(,CHAR(8)) RETURNS (FIXED BIN(31));

Arguments:

The file-name identifies a data base file. It may not be an
OUTPUT file.

The indfield specifies the index file. A current index
record must have been established by a READ INCDEX statement
when the #XREF function is invoked. The indfield expression
value is converted to a character string, if necessary, the
first eight characters of which identify the indexed
field.

Result:

The value returned by the #XREF function is a binary integer
of maximum precisicn giving the number of cross-references
in a current index record. If an index record is not
current, a zero value will be returned.

SUBFILE 8
9

2

5

A LIST OF A LIST OF

FILEPLEX SUBFILE

RECORD KEYS 6 RECORD KEYS

3.1 3.2

INDEX INDEX

FIGURE 1. FORMATION OF LISTS

= A 'I' B

A

S= A '&' B

A B

FIGURE 2. VENN DIAGRAMS

PAGE 92

APPENDIX A.

FILE LEVEL STATEMENTS

ON ERRORFILE (mfcb) I SYSTEM -
I_GC TO label_ ;

OPEN FILE (mfcb) <TITIE ('mfcb')> I DIRECT I I INPUT
I_SEQUENTIALJ I OUTPUT 1;

IUPDATE 1

CLOSE FILE (mfct) <ERASE>;

RECORD LEVEL STATEMENTS

LOCATE FILE (mfcb) KEYFROM (expr) j
LSUEFILE (scfn)_l :

READ FILE (mfcb) focrwards I <NOLOCK>;
I BACKARDS I

KEY (expr) I
| LIST (ptr) <KFY(n)> I
IPER SUEFILE (scfn) _

BEAD FILE (mfcb) SUPEII! (scfn) I forwards I <NOLOCK>;
EACKWARDS I

IKEY (expr)_

FEAD FILE (mfcb) INDEX (ifn)| forwards I
I BACKWARDS I ;
J_KEY (expr)_|

UNLOCK FILE fmfcb) <SUEFILE (scfn)>;

PAGE 93

PHYSICAL RECCED STATEMENTS

GET FILE (mfcb) RECORD INTC (var);

WRITE FILE (mfct) FROM (var);

FIELD LEVEL STATEMENTS

PUT FILE(mfcb) FIELD(fn<,fn2>) FROM (expr<,expr2>);

GET FILE(mfch) FIELD(fn<,fn2>) INTO (var<,var2>);

GET FILE(mfcb) INDEX(ifn) KEY INTO(var);

REPUT FILE(mfcb) FIELD (fn<,fn2>) FRCM (expr<,expr2>);

fullword = #FIEID (mfct, fn);

fullword = *XREF (mfct,ifn);

DATAEASE LIST STATEMENTS

GET FILE (mfcb) I SUEFILE (scfn) - LIST SET (ptr);
I INDEX (ifn)
_ anchor is index _I

GET FILE (mfcb <SUEFIIE (scfn)> KEY SET (ptr);

Ptr = CCLIST (mfcb, scfn, ptrl);

Ptr = CPLIST (mfcb, ptrl);

Ptr = UPLIST (mfcb, ptrl);

NON-DATABASE LIST STATEMENTS

PAGE 94

CN LISTERROR I SYSTEM I
IJGO TO label_l :

GET LIST (otr) KEV (0):

GET LIST (ptr) KEY <(n)> INTO (var):

GET LIST (ptrl) FEY SET (ptr2);

Ptr = ULIST (ptrl);

Ptr = DUPLIST (ptr1);

Ptr = LIST (ptrl,op,ptr2);

SET LIST (ptr2) SIZE (dim) LIKE LIST (ptrl);

GET LIST (ptrl) INTERNAL KEY INTO (var);

PUT LIST (ptr2) INTERNAI KEY FBCM (expr):

Fullword = #LIST (ptr);

FREE LIST (ptr <,ptr2>);

FREE LIST;

PAGE 95

GICSSARY

dim an expression resulting in a numerical
dimensicn value

expr an expression resulting in a value

fn an expression resulting in a field name

ifn an expression resulting in an indexed field
name

mfct mainline FILE control block name

n an expression resulting in a numerical
subscript value

op list operator: '' or '' or '-'

ptr pocinter to a list of keys in main stroage

scfn. an expression resulting in a subfile control
field name

var variable data area name

PAGE 96

TOPIC C.2 - CONVERSICN, VAIIDATICN, AND FORMATTING
BCUTINE TEST EPIVER PEFERENCE MANUAL

I. INTRODUCTICN

The RDBDRIVE program is a facility to allow the
programmer to test conversion, validation and
formatting routines conversationally. The user can
specify the rcutine names and the input data values.
This eliminates the need for a test data base, and
provides an efficient method for testing exit
routines.

II. LINKING EDPDRIVE

RDBDRIVE is a standard part of NASIS. Because its use
is limited to the programmer, it is not a part of the
standard user profile.

To use RDBDRIVE it must be entered into your user
profile. To do so, the following commands must be
executed:

SYNCNY DPIVER=*CCMMAND
DEFAULI NMTVEFBS="DIVEF=VBEIVE"
PBOFILE
APOFF

DRIVER now becomes a valid NASIS command, and will
invoke the test driver.

III. OPERATIONS

A. Input Mode

Upon initiating REBERIVE the user is prompted to
select an input mode. This is the format to
which his terminal input (which, by the nature of
the terminal must be alphanumeric) is translated
before it is sent to the first routine in the
string of routine names.

The available options are:

a = alphanumeric,
f = full word,
b = half word,
1 = long floating point,
p = packed decimal,
s = short floating point,
x = hexadecimal.

PAGE 97

A null response or an "END" response to the prompt
for input mcde will result in program termination.
Any other response is invalid, a diagncstic is
issued and the user is reprompted for the input
mode.

B. Routine Names

The user is next prompted to enter the routine
names he wishes to test. The routine names must
be ented in the order; conversion, validation,
formatting. Any routine may be defaulted to
null, positionally; i.e., only the followina
combinations are valid:

a
a,b
a,b,c
a,,c
,b
,b,c
V,c

Where:

a = conversion routine name,
b = validation routine name,
c = reformatting routine name.

A null respcnse returns the user to the prompt for
input mode.

The cnly validation check made on the routine
names is to insure that none of the names exceed
eight characters. If any do exceed eight
characters, the entire string is rejected and the
user is reprcmpted for the names.

If the user has specified a validation routine, he
is now prompted of any validation arguments. This
may be any character string, up to a maximum of
fifty bytes.

C. Input data

After the input mode has been selected and the
routine names specified, the user is prompted to
enter his routine input data. The input data is
subject to the restrictions of the specified input
mode, as follows:

1. Alphanumeric

PAGE 98

a. 256 character maximum string.

2. Full word

a. numerics and sign only,
t. fractions truncated,
c. 2,147,483,647 maximum,
d. -2,147,483,648 minimum.

3. Half word

a. numerics and sign only,
t. fractions truncated,
c. 32,767 maximum,
d. -32,768 minimum.

4. Ionq floating point

a. numerics and sign only,
t. fractions truncated.

5. Packed decimal

a. numerics and sign only,
t. decimal point ignored,
c. 15 diqits maximum,

6. Short floating point

a. numerics and sign only,
t. fractions only.

7. exadecimal

a. numerics and A-F only,
b. even number of characters only,
c. 256 character maximum string.

Any input errors will result in an appropriate
diagnostic. The bad string will be relected and
the user will te reprompted for input data.

A null response will return the user to the prompt
for routine names.

One special response exists. That is NULL. This
response will result in a null value being
converted to the specified input mode. This step
is necessary, since any null response to the
prompt for input data will cause the user to be
reprompted for routine names.

The input data is displayed to the user, first as

PAGE 99

he entered it, for verification. And next, in its
new form, as it will go to the first routine
specified.

The input data is passed to the first routine name

specified, for processing. The output from this
routine then becomes input for the next routine in
line.

D. Output

The cutput from each routine is labeled and
displayed to the user in hexadecimal. The output
from a formatting routine is also displayed in the
character format.

Any errors durinq processing will result in a
dianostic message. The user will then be
reprompted for input data.

E. Termiaticn

As previously noted, null responses to the program
prompts will filter the user back to the prompt
for input mode, and a null response or "END" will
cause program termination. No more than three
null responses will ever be needed to terminate
the program.

Another method of termination is merely a '/END'
response to any prompt.

PAGE 10

APPENDIX A.

SAMPLE Test Driver Session

begin nasis
ENTER NASIS COMMAND: driver
SELECT INPUT MODE: f
ENTER ROUTINE NAMES: dbcvtsn,,dbfmtsn
ENTER DATA VALUE: +12345
DATA VALUE = +12345

ROUTINE INPUT VALUE = 12345
AFTER CCNVERSION, HEX = 3039
AFTER REFORMA7TING, HEX = F1F2F3F4F5
AFTER PEFORMATTING, CHAR = 12345
ENTER DATA VALUE: (null response)
ENTER ROUTINE NAMES: (null respose)
SELECT INPUT MODE: x
ENTER ROUTINE NAMES: ,,dtfntsn
ENTER DATA VAlUE: 3039
DATA VALUE = 3039
ROUTINE INPUT VALUE = (unprintable)
AFTER REFORMATTING,BEX = F1F2F3F4F5
AFTER REFORMATTING, CHAR = 12345
ENTER DATA VALUE: /END
ENTER NASIS CCMMAND:

PAGE 101

TOPIC C.3 - MESSAGE FILE ErITOR USER'S GUIDE

I. INTfODUCTICN

The EDIT ccmmand provides a user with the capability of
creating, updating, and removing entries within a copy
of LISEMLF.

RDBMLF is a standard part of NASIS, however, because
its use is limited to the application programmer, it is
not a part of the standard user profile.

To use RDBMLF it must be entered into your user
profile. To do so the following commands must be
executed:

SYNONYM EDIT=*COMMAND
DEFAULT MTTVERES='EtIT=DBMLF'
PEOFIE
APOFF

In order to familiarize a user with the module, a
description of the file characteristics is necessary.

II. REGION CODE

The file is broken down intc two areas: one containing
terms for EXPLAINation and the other for module
messages.

A. TERMS

There are two types of terms each comprising their
own regional code characteristics.

I. GLOBAL terms

A global term is one which has a constant
definiticn, throughout the NASIS system. The
region code is derived from a period and the
first seven or less characters of the term
being defined. The term is left justified
and blanks filled.

EXAMPLE: term region

FORMAT .FORMAT

STRATEGY .STRATEG

2. File term

PAGF 102

A file term is one which has a set definition
for a particular file within the NASIS. The
region code is derived from the file name (6
characters maximum), a period (.), and the
first character of the term being defined.
The file name is left lustified and blank
filled.

EXAMPLE: file-name term region

ASEDI AUTHOR ASRDI .A

B. Module messages

Each module message contains a unique region code.
within that region there are three areas used for
defining the message. They are the message,
explanation of the messsage, and the responses to
the message. The region code is derived from the
message code itself. It is left justified and
blank filled to 8 characters.

EXAMPIE: message-id region

DBFZF01 DBMIF01

III. FILE ORDERING BY EUDEPIC VEY

The numeric key provides file sequencing of each entry
within a given region. The region code provides for a
partially alphatetically ordered file. The numeric
key maintains sequencing of all entries which develop a
duplicate region code (terms only).

A. TERMS

Terms are in numeric sequential order within a
region using a seven digit key and a constant
increment cf 10.

B, Module messages

Messages alsc maintain a seven digit key and a
constant increment of 10. However, a breakdown
of the numeric key provides partitioning of the
region code into the message content, explanation
and response. Numerically the key is governed as
follows:

a. ressage key range 00-90
explanation key range 1OC-390
response key range 400-9999990

PAGE 103

IV. UNIQUE CHAPACTERISTICS OF AN ENTRY

A. Term indication

Because of duplication of regional codes every
term is suffixed by a colon(:).

EXAMPLE: Term Region Code Key Record Content

FCEAT .FORMAT XXXXXXO FORMAT:"text"

B. Continuaticn Convention

The continuation convention for EXPLAIN is of two
types; physical and logical. They are represented
by a minus (-) and a plus (+), respectively.
These are ccntrol characters only, and are not
displayed to the NASIS user.

1. PHYSICAI

A physical continuation implies a continued
line will be displayed concatenated with the
previous line. The contextual method of
ccntrcling physical continuation is under
program control. A minus (-) at the end of a
text line indicates physical continuation.

2. LOGICAL

A logical continuation implies that a new
line will be displayed on the output device.
A plus (+) at the end of a text line
indicates logical continuation. The
contextual method of indicating logical
continuation is by a double slash (//) at the
end of each loqical line.

V. COMMAND DEFINITION

There are six user commands available for manipulation
of the LISENLF file.

A. ADD:

The ArD command will create a new entry in the
messaqe file cr concatenate new text lines to an
existing entry in the message file.

E. DELETE:

The UELETE ccmmand allows the removal of one or
more text lines or an entire entry in the messaqe

PAGE 104

file. An absolute match is made on the entry
before deleticn is allowed.

C. REPLACE:

The RIPLACE command allows the replacement of a
single entry in the message file with one or more
new text lines. An absolute match is made on the
entry before replacement is allowed.

D. DISPLAY:

The DISPLAY command allows one or more text lines
or an entire entry to be displayed on the output
device.

E. PREFIX:

The PREFIX ccmmand allows the modification of the
filter code of each message or all succeeding
messages.

F. END:

The END command causes termination of the EDIT
command processor. In addition the use of /END
on ATTN: will cause termination of the current
parameter prompt and a command prompt will be
returned to the terminal.

COMMANE SYNTAX

ADD (id),TYPE,TEXT
DELETE id, TYPE (,nl(,n2))
EISPLAY (id), TYPE (,nl(,n2))
REPLACE id, TYPE, N1, TEXT
PREFIX filter code
ENE none

Where:

id
is 1 to 8 characters in length depending on
the follcwinq constraints:

a. If the "type" parameter contains one of
the keywords (MSG, EXP, RSP) then id may
be up to 8 characters in length.

t. If the type parameter is defaulted to a
term i.e., keyword not specified, then
the id may be up to 6 characters in
length.

PAGE 105

c. The id contains the keyword GLOBAL. (The
region is developed from the first seven
(or less) characters of the term
supplied in the type parameter.

NOTE: The user is allowed to default the id
parameter when using the ADD or DISPLAY
commands. The default value is the id
specified by a previous command.

type
is either MSG, EXP, RSP, or a term, such
that:
MSG implies message text,
EXP irplies explanation text,
FESP implies response text, or
term is the string to be EXPLAINed,

text
is a string of characters that is to comprise
the text line(s). Separate but related
physical text entities may te separated by a
double slash (//); this accomplishes logical
continuation.

nl
is a starting line number at which the text
is to te DELETEd, REPLACEd, or DISPLAYed.
The default values apply only to the DELETE
and DISTIAY commands. The assumed values are
as follows:

0000000 for Type of MSG,
0000100 for type of EXP,
0000400 for type of RESP,

The default value for terms is determined by
finding the specified term within a region.

n2
is an ending (inclusive) line number to be
deleted or displayed. If omitted, only n1
will be involved.

filter code
is a two character filtering prefix, set at
any time by the PREFIX command; this prefix
will preceed each line (as per EXPLAIN
requirements.)

PAGE 106

TOPIC C,4 - RDBJOIN - JOCINING NEW USERS

I. INTRODUCTICN

The JOIN command gives the NASIS Data Base
Administrator the ability to control the access of
retrieval users to the various files of the system. In
addition, it also allows the DBA to specify passwords,
time slice values and authority codes which influence
use of the system. The information is maintained in
data set NASIS.USERIDS,

II. COMMANDS:

JOIN

The JOIN command establishes a new NASIS-ID which can
be used to access the system. This is accomplished by
creating a new record in the data set and inserting the
values for the various data fields.

Command: JOIN
Operands: NASISID=id,PASSWOD=code,TS=value,

AUTH=authority,FILES=file list

Where:

id
identifies the new NASIS-ID to be created.

Specified as: a 1-8 character alphanumeric value
beginning with a letter.

code
identifies the password or indentification code to
be used for this NASIS-ID.

Specified as: a 1-8 character alphanumeric
value.

Default: No password will be assigned.

value
indicates the magnitude of the time slice in Milli
Seconds to be assigned to this NASIS-ID under MTT
mode cf operation.

Specified as: a 1-5 digit numeric value.

authority
indicates the authority level to be assigned to
this NASIS-IE under MTT mode of operation.

PAGE 107

Specified as: a one character code, GU' for user
or 'D' for DEA.

Default: 'U' will be assigned.

file list
identifies the files to be made available to this
NASIS-ID.

Specified as: a list of fully qualified file
names, i.e. £EA-ID.FILE-ID.

QUIT:

The QUIT command removes a NASIS-ID from the list of
valid ids.

Command: QUIT
Operand: NASISID=id

CHANGE:

The CHANGE command is used to alter the values of one
or more of the data fields (other than the file list)
associated with a particular NASIS-ID,

Command: CHANGE
Operands: NASISID=id,PASSWORD=code,TS=value,

AUTH=authority

ADD:

The ADD command is used to specify new files which are
to be added to the list of files to which a given
NASIS-It is permitted access.

Command: ADD
Operands: NASISIr=id,FILES=file list

DELETE:

The DELETE command is used to remove files from the
list of files to which a particular NASIS-ID is
permitted access.

PAGE 108

Command: DELETE

Operands: NASISID=id,FIIES=file list

DISPLAY:

The DISPLAY command is used to list the files available
to a particular NASIS-ID, along with the other data
values present in his identification record.

Command: DISPLAY
Operand: NASISIr=id

III. EXAMPLE

USER: jocin lohn,ace,99999,,
SYSTEM: JOHN JOINED TO NASIS WITH PASSWORD=ACE,

TIMESLIC=99999 MILLESECONDS, AND AUTHORITY=.
USER: add john,(safetv.asrdi,safety.erts)
SYSTEM: Adds the two files to the list of files

available to JOHN.
USER: display Ichn
SYSTEM: Display the current information maintanined

fcr JOHN.
USER: change john,auth=d
SYSTEM: Applies the appropriate change.

PAGE 109

TOPIC D 1 - MAINTENANCE SUBSYSTEM

I. INTRODUCTICN

The maintenance commands provide for file definition,
creation, maintenance, and statistical reporting. The
Descriptcr Editcr provides the data base administrator
with an interactive means of defining the data fields
comprising a data base. File creation function is
accomplished by LELOAD, a generalized loading program,
which supports several input data formats. File
maintenance can be performed either on-line, by an
interactive data editting capability, or off-line by
the generation of maintenance transactions which can be
grouped, validated and applied under the direction of
the data base administrator. Concurrently the system
maintains statistical information on the maintenance
activity of each file.

II. THE MAINTAIN COMMAFD

To initiate the Maintenance Subsystem, the user must
enter the fAINTAIN command, e.g.:

-ENTER NASIS CCEMAND: maintain

The user may now enter any of the Maintenance Commands,
such as; COMBINE, CORRECT, EDIT, INVERT, LOAD, PRINT,
or UPDATE.

PAGE 110

TOPIC D.2 - DESCRIPTOR EDITOR

I. INTRODUCTICON

The Descriptor Editor is an editing program used for
creating and updating the field descriptors of a NASIS
Data Base.

II, INVOKING TE EDITOF

The Descriptor Editor is invoked by entering the EDIT
command and specifying the appropriate mode of
operation.

EDIT MCDE=<CREATE|UPEATEIRESTORE>

Where:

MODE
Is Specified as:

CREATE: assumes that no data files exist and that
the user is either creating or continuing to
create field descriptors.

UPDATE: assumes that data files do exist and that
the user wishes to modify the description of
one or more of the fields. The UPDATE mode
allows the user to make changes that do not
affect the physical format of the record.

RESTOFI: reads in previously, check-pointed
descriptors and continues processing in the
CREATE mode.

For all modes the first letter of the mode type is a
sufficient abbreviation. If the entered mode value is
invalid, the editcr will re-prompt the user for a
correct value. If the user defaults the prompt for the
mode, the Editor will terminate and control will be
returned to the Maintenance director.

EXAMPLES:

1. The user wants to create a new data base
whose name is PEOPLE.

SYSTEM: ENTER NASIS COMMAND:
USER: MAINTAIN
SYSTEM: ENTER FILE NAME:
USER: FEOPLE
SYSTEM: ENTER:

PAGE 111

USER: EDIT
SYSTEM: ENTER MODE:
USER: CREATE

2. The user wants to modify the descriptors for
an existing data base whose name is PGMS.

SYSTEM: ENTER NASIS COMMAND:
USER: MAINTAIN PGMS
SYSTEM: ENTER:
USER: EDIT UPDATE

3. The user has a checkpointed set of
descriptors for the data base GAMES which he
wishes tc continue defininq.

SYSTEM: ENTER NASIS COMMAND:
USER: MAINTAIN GAMES
SYSTEM: ENTER:
USER: EDIT RESTORE

III. DEFINITIONS

The following definitions are used throughout this
secticn:

1. Boolean Values - Used where ever a yes or no type
of response is required. The following are
acceptable values for a 'yes' type of response:

YES, Y, TRUE, T, CN, 1.

The following are acceptable values for a 'no'
type of respcnse:

NO, N, FAISE, F, CFF, 0.

2. Fieldname - Is a character string of 1-8
characters long of the following form: the first
character must be alphabetic, and the other
characters, if any, must be alphanumeric.

3. Routine Name - Is a character string of 1-8
characters long with the following form: the
first character must be alphabetic, and the rest
of the characters, if any, must be alphanumeric.

IV. THE CREATE MODE CCMMANDS

A. The ArC and CHANGE COMMANDS allow the user to
create a new field descriptor or modify existing
field descriptors.

PAGE 112

ADD(ICHANGE) PLDNAME=field-name,
TYPF= (FIDTYPE=field-type

<,ALIGN=<RIGHT|LEFT>>),
FCM= (FLDFOR =field-format,

FLDLEN=field-lenqth,
EIEMIEN=element-length,
ELEMLIM=element-number
<,UNIQUE=<YIN>>),

BOUTINES- (CCNV=conversion-routine,
FORMAT=formatting-routine,
VALID=validation-routine,
VALIDARG=validation-argument),

INDEXED=(INDEX=<YIN>,
IFLDNAME=field-name
<,EXTINT=<INTERNAL EXTERNAL>,

EXTLEN=external-length,
SPANNED=<Y N>>),

ASSCCED = (ASSOC=<Y N>,
APLDNAME=field-name),

SUBFILED= (SUBFILE=<YI N>,
SFLDNAME=field-name),

SUBFIELD= (SUBFLD=<Y N>, BASEFLD=field-name,
OFFSET=offset
<,<FILE=<*filename ANCHOR>>
or <FILE=<ASSOCIATEDISUBFILE>,

FLDNAME2=field-name>>)

Where:

FLDNAME
identifies the field tc be added.

Specified as: a valid fieldname.

FIDTYPE (FIEID TYPE)
identifies the physical format of the
field.

Specified as:

A - alphanumeric character string

B - bit string

EN - 8 bit unsigned binary number

BP - packed bit string. These fields
will be placed immediately after
the key field as one contiguous bit
string.

EX - hexadecimal

PAGE 113

IN - larce numberic (32 tit signed
binary number).

S - scientific (14 digit decimal number
within the range of 10**-75 :
1C*++75).

SD - scaled decimal (nine digit numbers
within the range 10**-9
10**+9).

SN - short numeric (16 bit signed binary
number).

SS - short scientific (six digit
decimal number within the absolute
range of 10**-75 : 10**+75).

ALIGN (ALIGNMENT)
identifies right or left alignment of the
field.

Specified as: 'RIGHT' or 'R' for right
alignment and 'LEFT' or 'L' for left
alignment.

FLDFORM - (FIELD FORMAT)
identifies the logical format of the field.

Specified as: F-FIXED, V-VARIABLE, FE-FIXED
ELEMENT, VE-VARIABLE ELEMENT.

FLDLEW (FIELD IENGTB)
indicates the length of fixed fields or the
taximun length for other types of fields.

Specified as: a positive number.

(1) For the file key field, the maximum
field length is 256.

(2) For all other fields:

(a) If FLDFORM=F, then the maximum
field length is 3996 minus the key
field length;

(b) For all other values of FLDFORM,
the maximum length is 3994 minus
the key field length.

ELEMLIN (ELEMENT LENGTH)
indicates the taximum lenqth of fixed and

PAGE 114

variatle elements.

Specified as: a positive number with the
range of 1-256 if FLDFORM is FE: the range is
1-255 if FLDFORM is VE.

ELEMLIM
indicates the maximum number of elements
allowed in the field.

Specified as: a positive number.

(1) If FLDFORM=FE, then the maximum number
cf elements is equal to the field
length.

(2) If FLDFORM=VE, then the maximum number
of elements is the field length divided
by two.

UNIOTUE
indicates whether or not all element values
within a multi-element field are to be
unique.

Specified as: a boolean value.

tefault: N

CONV (CONVEPSION ROUTINE NAME)
identifies the name of the routine used to
convert the input data as it is placed into
the data base.

Specified as: a routine name.

FORMAT (FORMAtTING ROUTINE NAME)
identifies the routine used to format the
data for output from the data base.

Specified as: a routine name.

VALID (VALIDAIION ROUTINE NAME)
identifies the name cf the routine used to
validate the input data.

Specified as: a routine name.

VALIEARG (VALIDATICN ROUTINE ARGUMENT)
indicates the argument required by the
validaticn routine to validate the input
values.

PAGE 115

Specified as: a hexadecimal character string
cf 1-100 characters.

INDEX
indicates whether the field is to be
indexed.

Specified as: a toolean value.

Cefault: N

IFLUNAME
identifies another field previously defined
with which this field is to be indexed.

Specified as: a valid fieldname of a
previously entered indexed field.

Eefault: the Editor assumes that this field
is the first entered field of a new index
file.

EXTINI
indicates whether the key of the index file
is to be in internal or external form. If
the key values are to be in external form,
then the field values must be formatted
before being placed on the index file.

Specified as: INTERNAL or I for internal
form or EXTERNAL or E for external form.

refault: internal form, i.e., the value used
cn the irdex file is the same as that stored
in the anchor file.

EXTLEN (EXTERNAL LENGTE)
indicates the maximum lenqth possible for an
formatted value of the external field.

Specified as: a positive numeric value in
the range 1-25E.

NOTE: if the EXTINT entered value is
external, then EXTLEN must be specified.

SPANNED
indicates that this index is to consist of
spanned records.

Specified as: a boolean value.

tefault: N

PAGE 116

NOTE: this implies that the maximum length
for index keys can be no larger than 255 to
allow for a one byte spanned counter,

ASSOC (ASSOCIATED)
indicates whether the field is to be
associated.

Specified as: a toolean value.

tefault: N

AFIDNAME
identifies another field previously defined
with which this field is to be associated.

Specified as: a valid previously entered
field name.

Eefault: the Editor assumes that this field
is the first entered field of a new
associated file.

SUBFILE
indicates whether the field is to appear on a
sutfile.

Specified as: a boolean value.

Default: N

SFIrNAME
identifies another field previously defined
which identifies the subfile on which the
field is to be placed. The field named may
te the subfile control field.

Svecified as: a valid previously defined
fieldname.

SUBFL
Indicates whether this field is to be defined
on either a part or the whole of another
field.

BASEFLD
identifies the field on which this new field
is to be defined.

Specified as: a valid previously defined
fieldname.

OFFSET

PAGE 117

indicates the bit or character position of
the defined field on which this subfield is
to start.

Specified as: a positive numeric value
tetween zero and the lenght of the defined
field minus one.

NOTE: the offset value must be specified if
the subfield is specified.

FILE
identifies the descriptor region on which
resides the field that is the defining base
for this subfield.

Specified as:

(1) The character **' concatenated to the
descriptor file reqion name.

(2) The anchor file which may be entered as
either of the followina: ANCHOR or
AN.

(3) An associated file which may be entered
as either of the following: ASSOCIATED
or AS.

(4) A subfile which may be entered as either
of the following: SUBFILE or S.

tefault: will be assumed to be the anchor
file.

NOTE: this parameter only needs to be
entered if the defined fieldname is not
unique within the data base, such as
RECLEN.

FLDNAME2
identifies a field which is used to determine
which associated file or which subfile is
being referenced.

Specified as: a valid fieldname.

NOTE: There is a user default variable
"EDPROMET" which when set equal to "Y" will
cause the user to be prompted for every
possible applicable parameter while the user
is either ADDing a new field or CHANGing an
existing field. In the normal mode there are

PAGE 118

rarameters such as field alignment ("ALIGN")
which are not prompted for if the user does
nct enter them in the command stream.

NOTE: Any parameter to the CHANGE function
which is defaulted will imply that the
existing value for that descriptor field will
te left unaltered.

NOTE: There is a user default variable
"EDPRCMEI" which when set equel to "Y" will
cause the user tc be prompted for every
pocssible applicable parameter while the user
is ArD'ing or CHANGE'ing a field. In the
normal mode, there are parameters such as
field aliqnment, "ALIGN", which are not
prcmpted for if the user does not enter them
in the ccmmand stream.

EXAMPLES:

1. Vhen first creatina a new set of descriptors,
the user is first prompted for the anchor
file key field.

SYSTEM: ENTER KEY:
USER: AEr ACCESSNO
SYSTEM: ENTEF FIEIDTYPE:
USER: A
SYSTEM: ENTER FIELD FCRMAT:
USER: F
SYSTEM: ENTER FIELD LENGTH:
USER: 8
SYSTEM: ENTER ROUTINES:
USER: (return - wants standard defaults)
SYSTEM: ENTER: (prompt for next editinq

request)

NOTE: If the user declines to enter the key
field information, the Editor is terminated
and control is returned to the Maintenance
director.

2. The user wishes to add the field USERNAME
which is to te a varying element field, each
element is to be 12 characters long and allow
for 50 elements per record. USERNAME is to
be placed on the associated file along with
USERTYPE, It is also to be inverted.

SYSTEM: ENTER:
USER: ADD
SYSTEM: ENTER FIELD NAME:

PAGE 119

USER: USERNAME
SYSTEM: ENTER FIELD TYPE:
USER: A
SYSTEM: ENTER FIELD FORMAT:
USER: VE
SYSTEM: ENTER FIELD LENGTH:
USER: 500
SYSTEM: ENTER ELEMENT LENGTH:
USER: 12
SYSTEM: ENTER NUMBER OF ELEMENTS:
USER: 50
SYSTEM: ENTER ROUTINES:
USER: (CONV=UNCVT,FORMAT=UNFMT,

VALID=UNVAL,)
SYSTEM: IS FIELD TO BE INDEXED?
USER: YES
SYSTEM: ON WHICH INDEX FILE IS FIELD TO BE

PLACED?
USER: (return)
SYSTEM: IS FIELD TO BE ON AN ASSOCIATED

FILE?
USER: Y
SYSTEM: ON WHICH ASSOCIATED FILE IS FIELD TO

BE PLACED?
USER: USERTYPE
SYSTEM: IS FIELD TO BE PLACED ON A SUBFILE?
USER: NO
SYSTEM: ENTER DEFINING BASE FIELD NAME:
USER: (return)
SYSTEM: ENTER:

3. The user wishes to change the field length on
field SOCSECNO from 8 to 9 and wishes to
rake the index on which it appears a spanned
index.

SYSTEM: ENTER:
USER: CHANGE SCCSECNO,,(,9),,(,,,,Y),,,,

B. The AELIKI Eescriptor Function

This functicn allows the user to create a
descriptor with all the same specifications as a
previously defined field.

ADDLIKE FLDNAME1=new-fieldname,
FLDBAME2=other-fieldname

Where:

FLDNAME1
identifies the new descriptor to be added.

PAGE 120

Specified as: a valid fieldname.

FIDNAME2
identifies a previously defined field of
which the new field is to be an exact
duplicate except for the field name.

Specified as: a valid field name.

EXAMPLE:

1. The user wishes to add field MINKEYWD to have
exactly the same specifications as the field
VAJKEYWE.

SYSTEm: ENTER:
USER: ADELIKE MINKEYWD,MAJKEYWD

C. The CHECKPCIVT Command

Checkpoint allows the user to save the descriptors
currently defined in a separate TSS VAM file.

CHFPCINT (none)

CBKPCINT should be used when it is deemed
necessary to save the descriptors as rapidly
as possible. The user may continue to
process at a future time VIA the Restore
Command.

D. The CREATESUB Command

The ccmmand allows the user to create a sutfile.

CPEATSUE FIENAME=control-field-name,
MAXPECS=#-records,
ASSCC=<YIN>,
AFLrNA~E=field-name

Where:

FIENAME
identifies the field to be known as the
subfile control field.

Specified as: a valid field name.

MA XRECS
indicates the maximum number of subfile
records that can occur per anchor file
record.

PAGE 121

Specified as: a binary number in the range
cf 1:132!.

ASSOC
indicates whether the field is to be
associated.

Specified as: a toolean value.

refault: N

AFLDNAME
identifies another field, previously defined,
with which this field is to be associated.

Scecified as: a valid previously entered
fieldname.

EXAMPIE:

The user wants to create a subfile for "PETS"
which is to te associated with CHILD.

SYSTEM: ENTER:
USER: CREATSUB PETS,20,Y,CHILD

E. The DELETE Command

This command allows the user to delete a
previcusly created field descriptor other than
the key field.

EFLETE FIDNAME=fieldname

Where:

FIDNAME
identifies the field to be deleted.

Specified as: previously described field
rame.

F. THE DISPLAY CCMMAND

This command allows the user to display the
specificaticns entered for a previously created
descriptor.

DISPLAY FLDNAME=fieldname

Where:

FLENAE'

PAGE 122

identifies the field descriptor to be
displayed.

Specified as: a valid fieldname.

G. The ENE command

This command terminates a descriptor editor
session.

YNE (none)

After the FNt command has finished, control will
be returned to the Maintenance director. If the
user has not FILE'd since making additions,
deletions, or modifications, he will be queried as
to whether te wishes to FILE the descriptors. If
the user wishes to terminate, then the descriptor
editor will indeed terminate the current session;
otherwise, the user will be prompted for his next
descriptor editor command.

H. The FIELDS Ccmmand

This command allows the user to display the names
of all the field descrirtors thus far defined.

FIELDS (none)

I. The FILE Command

This function allows the user to indicate that he
wants the descriptors to be written from virtual
memcrv to disk storage.

FIE DESCCK=<!TN>

Where:

DESCOK
indicates whether or not the descriptors are
complete. If a NO value is indicated no data
can be locaded into this file.

Specified as: a toolean value.

refault: N

J. The FIDSEC (Field Security) Command

This command permits the data base owner to
restrict access to a field or a group of fields.

PAGE 123

FLDSEC FLtNAtME=(field-name),
SECUPITY= (<<AED EELETE>.>

security-code<,...>)

Where:

FLDNAME
is a list of one or more existing fieldnames
to which the data base owner wishes to
restrict access.

Specified as: a list of valid fieldnames.

SECURITY
is a list of security codes appended by an
add-delete code separated from the security
code by a period. The add-delete code is
specified as A or ADD for adding a security
code and D or DELETE for deleting a security
code. If no add-delete code is entered, it
is assumed the user is adding the security
code. The security code is specified as an
alphanumeric character string of 1 to 8
characters. A maximum of 18 security codes
ray be specified for any field.

EXAMPIE:

The data base owner wishes to restrict the
fields ACCOUNT and VALUE to the persons with
the security codes BOB, HARRY, and JOHN and
to delete TOM from the security list.

SYSTEM: ENTER:
USER: FLDSEC (ACCOUNT,VALUE) ,(ADD.BOB,

A.HARRY,A.JOHN,D.TOM)

K. The MCVE Command

This command allows the user to reposition fields
within the defined data layout.

MOVE FLINAMFl=new-location-fieldname,
FLDNAME2=fieldname

Where:

FLrNAME1
identifies which field or the new location
after which the field specified by FLDNAME2
is to te positioned.

Specified as: a valid fieldname.

PAGE 124

FPDNAFE2
identifies the field to be moved.

Specified as: a valid fieldname.

NOTE: A redefined field, i.e., subfield,
cannot be moved as its position is determined
by the position of the base field. If a
subfield is specified as the new position
fieldname, the MCVE command will locate and
use the base field name as the new position
field name.

NOTE: A superfield cannot be used as a new
position fieldname, nor can it be moved, as
a superfield consisting only of other fields
has nc field position.

EXAMPLE:

The user has entered the three fixed fields
in the following: AREACODE, 1OCALNUM,
FXCHNG The user wishes to change the order to
AREACODE, EXCHNG, LOCALNUM.

SYSTEM: ENTER:
USER: MOVE AREACODE,EXCHNG

Notice this could also be accomplished by the
following:

SYSTEM: ENTER:
USER: MCVE EXCHNG,10CALNUM

L. The PPINT Command

This command qenerates a printer listing of all
the field descriptors and file descriptors as they
exist in core at the time the PRINT was issued.

PRINT (none)

M. The RENAME Ccmmand

This command permits the user to change the name
of a field without altering any of its other
specifications or its location in the data
record.

RENAME PLDNAME1=new-fieldname,
FIDNAME2=old-fieldname

Where:

PAGE 125

FIENAME1
identifies the new field name.

Specified as: a valid fieldname.

FLENAME2
identifies the existing field name

Specified as: a valid fieldname.

EXAMPLE: The user wishes to change the name of the
field CIENAME to the name NEWNAME.

SYSTEM: ENTER:
USER: RENAME NEWNAME,OLDNAME

N. The RECSEC (Becord Security) Command

This command permits the user to control access to
a group or groups cf records within the data
base.

FECSEC CEFLNAMF=field-name,
SECURITY = (<<ADDIDELETE>.>

security-code:mask<,...>)

Where:

DFLDNAME
is the existing fieldname to which the file
record security is to apply.

Specified as: a valid fieldname.

SECUrITY
is a list of up to 18 security codes and
security masks determining who is to be
permitted access to the secured records on
the file. It is specified as an add-delete
code followed by a period, followed by the
security code, followed by a colon, followed
ty the security mask. The add-delete code is
specified as ADD or A for adding a security
code, or DELETE or D for deleting a security
code. The security code is an alphanumeric
character string of 1-8 characters. The mask
is two dicit hexadecimal code.

The security code is used to compare against
the value in the record security field of a
record to determine whether or not a user has
access to that record.

PAGE 126

0. The RESTORE Command

This command permits the user to restore to
virtual memory the descriptors which had been
previously saved by the use of the CHKPOINT
command.

FESTOBE (none)

P. The SAVSTRT (Save Strategy) Command

This command allows saving of descriptor editor
commands in the strategy data set for future
recreation of descriptors as they existed in
virtual memory when the SAVSTRAT command was
issued.

SAVSTRT STRTNAME=strategy-name

Where:

STETNAME
is the strategy name in the strategy data set
in which the descriptor editor commands are
to be saved.

Specified as: a 1-16 character long
alphanumeric character string.

O. The Superfld (Define Superfield) Command

This command allows the user to create a new field
descriptor which is defined as consisting of Data
from several fields.

SUPERFLD FLDNAME=fieldname,
RCUTINES=FORMAT=formatting-routine,
FIDLIST=(<<INTERNALIEXTERNAL>.>

field-name<,...>)

Where:

FIDNAME
identifies the name of the new superfield.

Specified as: a valid field name.

FORMAT
identifies the routine used to format the
data for output from the data base.

Specified as: a routine name.

PAGE 127

FLDLIST
is a list of the previously defined
fieldnames from which this superfield is to
te composed. The order of the fieldnames
used to define the superfield is the order in
which they were entered. The user may
specify whether the internal or external form
of the field is to be passed to the
superfield formatting routine.

Specified as: a list of up to 16 character
strings of the form: The output format
concatenated to a period concatenated to the
fieldname to be included in the superfield.
The format type internal may be specified
as:

INEPNAI or I

The format type external may be specified
as:

EXIERNAL or E

refault: If the output format is omitted,
then it will be assumed to be the external
format type.

NOTE: The superfield components must stay within
the fcllowing restrictions:

1. It may contain at most one multi-element
field.

2. It may contain components from one but not
more than one subfile.

IV. THE UPDATE MODE CCMMANDS

A. The CFANGE CCNEAND

This command allows the user to modify a
previously defined field.

CHANG1 FLENAME=fieldname,
TYPE=(FLDTYPE=field-type

<,ALIGN=<RIGHTILEFT>>),
FORM=(FLDFORM=field-format,

FLDIEN=field-length,
ELEMLEN=element-length,
ELELI M=element-number
<,UNIOUE=<YN>>),

ROUTINE= (CCNV=conversion-rontine,

PAGE 128

FORMAT=formatting-routine,
VALID=validation-routine,
VAIDAEG=validation-argument)

Where:

FLENAME
identifies the field to be modified.

Specified as: a valid fieldname.

FLETYPE
identifies the physical format of the
field.

Specified as:

A for an alphanumeric character string, of
which each character may consist of any
valid EBCDIC character.

B for a bit string.

BN for an 8 bit unsigned binary number
which has a value in the range 0-255.

BP for a packed bit string the same as 8,
except that these fields will be placed
immediately after the key field as one
continuous bit string.

HX for a strin of hexadecimal numbers.

LN for numeric or a 32 bit signed binary
numter.

S for scientific or 14 digit decimal
number within the range of 1C**-75 :
10**+75.

SD for scaled decimal nine digit number
within the range of 10**-9 : 10**+9.

SN for numeric or 16 bit signed binary
number.

SS for short scientific or a six digit
decimal number within the range of
10**-75 : 10**+75.

ALIGN
identifies either right or left alignment of
the field.

PAGE 129

Specified as: RIGHT or R for right alignment
and LEFT or L for left alignment.

FLDFOEM
identifies the logical format of the field.

Specified as: F for FIXED,V for VARIABLE,FE,
for FIXED EtENENT,VE, for VARIAELE ELEMENT.

FLDLEN
indicates the length of fixed fields or the
maximum length for other types of fields.

Specified as: a positive inteaer.

(1) For the anchor file key field, the
maximum field length is 256.

(2) For all other fields:

(a) If FLDFORM=F, then the maximum
field length is 3996 minus the key
field length; otherwise,

(b) For all other values of FLDFOR1,
the maximum length is 3994 minus
the key field length. This allows
for a two byte field length
indicator.

ELEMIEN
indicates the length of fixed elements or the
maximum length for variable elements.

Specified as: a positive numeric value with
the range of 1-25E if FLDFORM is FE, else the
range is 1-255 if FLDFCRM is VE. This allows
one byte for an element length indicator.

ELEMLIM
indicates the maximum number of elements
allowed in the field.

Specified as: a positive integer.

(1) If FLDFORM=FE, then the maximum number
of elements is equal to the field
length.

(2) If FLDFCRM=VE, then the maximum number
of elements is the field length divided
by two.

PAGE 130

UNIOQU
indicates whether or not all element values
within a multi-element are to be unique.

Specified as: a boolean value.

CONV
identifies the name of the routine used to

convert the input data as it is placed into
the data base.

Specified as: a routine name.

FORMAT
identifies the routine used to format the
data for output from the data base.

Specified as: a routine name.

VALID
identifies the name of the routine used to
validate the input data.

Specified as: a routine name.

VALIDARG
indicates the argument required by the
validaticn routine to validate the input
values.

Specified as: a hexadecimal character string
of 1-100 characters.

NOTE: In the UPDATE mode, values to the CHANGE
function will not be accepted which cause changes
to be made to other field descriptor records, such
as changing the field length if the field format
is fixed as this changes the base length of the
data records.

NOTE: Any parameter to the CHANGE function which
is defaulted, will imply that the existing value
for that descriptor field will be left
unaltered.

Note: There is a user dafault veriable "EDPROMPT"
which when set equal to "Y" will cause the user to
be prompted for every possible applicable
parameter while the user is CHANGE'ing an existing
field. In the normal mode there are parameters
such as field alignment ("ALIGN") which are not
prompted for if the user does not enter them in
the command stream.

PAGE 131

EXAMPLE:

The user wishes to change the specifications
for the field PEOPLE to RIGHT alignment,
chanqe the element length from 20 to 30 and
the element limit from 5 to 10.

SYSTEM: ENTER:
USER: CHANGE PTOPLE,(,RIGHT),(,,30,10),,

B. The DISPLAY CCMMAND

This command allows the user to display the
specificaticns entered for a previously created
descriptor.

EISPLAY 1IDNAME=fieldname

Where:

FLDNAME
identifies the field descriptor to he
displayed.

Specified as: a valid fieldname.

C. The END CCMMAND

The END command is terminates a descriptor editor
sessicn

END (none)

After the END command has finished, control will
be returned tc the Maintenance Director.

D. The FIELDS Ccmmand: displays all of the descriptor
fieldnames in the descriptor file record, and all
of the descriptor fieldnames in a field
descriptor.

FIELDS (none)

E. FLDSEC (Field Security) Command: permits the file
owner to restrict access to a field.

FLDSEC FLrNAME=field-name,
SECURIY = (<<ADD DELETE>. >

securitv-code<,...>)

FLDNAFE
is an existing field name to which the owner
wishes to restrict access.

PAGE 132

Specified as: a valid fieldname.

SECURITY
is a list of security codes appended by an
add-delete code separated from the security
code by a period. The add-delete code is
specified as A or ADD for adding a security
code and D or DELETE for deleting a security
code. If no add-delete code is entered, it
is assumed the user is adding the security
code. The security code is specified as an
alphanumeric character string of 1 to 8

characters. A maximum of 18 security codes

may he specified for any field.

F. The PATCH Command

This command is used to change the value of almost
any descriptor field on any descriptor record in
any descriptor region. To use the PATCH command,
the user must do a REVIEW of the desired
descriptor record. This not only displays the
contents of this descriptor but also positions to
the record that is to be patched.

PATCH (keyword=text<,...>)

Where:

keyword
identifies the descriptor field that is to be
patched.

text
is the value with which the descriptor field
specified in 'keyword' is to be patched.

The user may specify any number of patches in a
parenthesized list.

The following is a list of file descriptor or
header descriptor field names that may be patched
and their values.

HEADER FIFLENAME FIELD VALUES

(1) FILETYPE ANCHOR or 1, ASSOCIATE or 2,
SUEFILE or 3, INDEX or 4.

(2) EESCRCT A positive integer <= 4000.
(3) ESELNGTH A positive integer <= 4000.
(4) rESCOK A boolean value.
(5) SPANNEr A toolean value.
(6) CATA A boolean value.

PAGE 133

(7) ENTNAEIE A boolean value.
(8) MNTNING A boolean value.
(9) 10ADABLE A boolean value.
(10) REMAINS A hexadecimal character string

in the range of C000C to
FFFFFFF.

(11) RECSECFP A positive integer <= 261.
(12) RSECTYCD The form of the patch text is:

(n) security-code:mask

Where:

n
is the index of the security code to be
patched. The index must be entered or the
patch will te rejected.

Specified as: a positive integer <= 18.

NOTE: The next security code value may be
added to the list by specifying the next
larger index value.

Refer to the RECSEC command writeup for a
discussion of the security parameter.

EXAMPIE:

The user wishes to patch the anchor header
descriptor so that BSELNGTH=31, DATA=NO, and
the second value of record security to
BOB:60.

SYSTEM: ENTER
USER: REVIEW ' ',*HEADER
SYSTEM: (displays the anchor header

information.)
SYSTEM: ENTER:
USER: PATCH (BSELNGTH=31,DATA=N,

RSECTYCD= (2) BOB: 60)
SYSTEM: ENTER

The following is a list of field descriptor
fieldnames that may be patched along with their
values.

FIELD DESCRIPTOR
FTELDNAMES FIELD VALUES

(1) ASSOCFII a one character string in the
range 'C' to '9'.

PAGE 134

(2) SUDFILE a one character string in the
range *'Q to 'Z'.

(3) INVFILE a one character string in the
range 'A' to 'P'.

(4) READCNLY a boolean value.

(5) SUBCNTRL a boolean value.

(6) VARFL£ VARYING or V,FIXED or F.

(7) EITFLD a boolean value.

(8) NUMALIGN RIGHT or R,LEFT or L.

(9) VAREL VARYING or V,FIXED or F.

(10) TNIQUELT a toolean value.

(11) INDEXEXT EXTERNAL or E,INTERNAL or I.

(12) GENEPCRT a routine name.

(13) VALIDRTN a routine name.

(14) REFORMAT a routine name.

(15) SPARE a hexadecimal character
string in the rance of
C00000C00000000 to
FFFFFFFFFFFFFFFF.

(16) FLDPOSIT a positive integer <= 4000.

(17) FLDLEN a positive integer. If the
field is a single element and
indexed then the maximum value
is 256. Otherwise the maximum
value is 4000.

(18) DFIDLEN a positive integer. If the
field is a single element and
indexed then the maximum value
is 256. Otherwise the maximum
value is 4000.

(19) ELTLIM a positive integer. If the
elements are fixed length, the
maximum value is 4000.
Otherwise the maximum value is
2C00.

PAGE 135

(20) TELTLIM a positive integer. If the
elements are fixed length,
the maximum value is 4000.
Otherwise the maximum value is
2000.

(21) ELTLEN a positive integer <= 256.

(22) DELTLEN a positive integer <= 256.

(23) VALIDARG a hexadecimal character string
of length 1 to 100
characters.

(24) NAMEFLE The patch text is of the
form:

(n)<<INTERNALIEXTERNAL>.>fieldname

Where:

n
is the index of the
superfield component to
be patched.

Specified as: a positive
integer <= 16.

NOTE: The index must be
entered or the patch will
be rejected.

Refer to the SUPERFID
command writeup for the
superfield components
description.

(25) SECUPITY The patch is in the form:

(n) security-code

Where:

n
is the index of the
security code to be
patched.

Specified as: a positive
integer <= 18.

NOTE: The index must be

PAGE 136

entered or the patch will
be relected.

security-code
is an alphanumeric
character string of
length 1 to 8
characters.

EXAMPIE:

The user wishes to patch the field PHONENUM
on associate file 1 to have a formatting
routine of FHCNFMT on the third component of
this superfield to be in external form and
have the field name of LOCALNUM.

SYSTEM: ENTER:
USER: REVIEW 1,PHONENUM
SYSTEM: (displays the field information.)
SYSTEM: ENTER:
USER: PATCH (BEFORMAT=PHONFMT,

NAMEFLD=(3)E.LOCALNUM)
SYSTWM: ENTEF:

G. The RECSEC (RECORD SECURITY) COMMAND

This command permits the owner to control access
to a group or groups of records.

RECSEC DFLDAME=field-name,
SECURITY = (<<ADD DELETE>.>

security-code<,...>)

Where:

DFIDNAME
is an existing fieldname which is used to
define which file record security is to
apply.

Specified as: a valid fieldname.

SECURITY
is a list of up to 18 security codes and
security masks determining who is to be
permitted access to the file. It is
specified as an add-delete code, followed by
a period, followed by the security code,
followed by a colon, followed by the security
cask. The add-delete code is specified as
ArU or A for adding a security code, or
EEIETE or D for deleting a security code.

PAGE 137

The security code is an alphanumeric
character string of 1-8 characters. The mask
is a two dicit hexadecimal code.

The security code is used to compare against
the value in the record security field of a
record to determine whether or not a user has
access to that record.

NOTE: In the UPDATE mode the record security must
already exist for the file to be able to use
RECSEC. In the UPDATE mode, RECSEC is used to
update the existing list of record security codes
and masks,

H. The REVIEW CCEMAND

This command is used to review the contents of any
descriptor record on any descriptor file. This
includes dummy records, file descriptor records
and those records such as RECLEN which are not
unique to the entire data base.

PEVIEW FILE=file-name,
FIDNAME=<*HEADERtfield-name>

Where:

FIT,E
identifies the descriptor region containing
the fieldname to be reviewed.

Specified as: the full descriptor region
name or the character suffix of the
descriptor region.

VOTE: A null value is taken to indicate the
anchor region.

FIDNAME
identifies the field which is to be
reviewed.

Specified as: a valid fieldname or either of
the following character strinqs: *HEADER or
* which will imply a review of the file
descriptor for the descriptor region named
above.

PAGE 138

APPENDIX A.

As Descriptor Editor command format.

1. Edit rescriptcr.

EDIT MOCDE =<CREATEIUPEATEIRESTOPE>

B. Create Mode command formats.

1. Att FirVA!MT=field-nave,
TYPE= (FLLTYPF=field-type

<,ALIGV=<RIGHTt LEFT>),
FOBi= (FLEFOB?1~field- format,

FLDLEV=field-leigth,
ELEM'LE=element-lenqth,
ELEMfLIM=element-number
<,UNIQUE=<YjW),

FOUTI'NES= (CC NV=conversion-routine,
FORMtA=fcrmattinq-routive F

VALID= validation-routine,
VALirARG=validation-argument),

INDEXED= (IVDEX=<Yf N>,
IFLDNAIIE=field-name
<,EXTINT=(INTEPNAL IEXTERNAl>,

EXTLEV=external-lenotb,
SPANNED=<Y IN),

ASSOCED=(ASSCC=<YfN>,
AFIENA!IE=field-name),

SUBFItFD=(STBILE-<YI N>,
SFLDNANE=field-name),

SUBFIELD (SUBFLD=<YI N>,BASEFtD=FiIrLLAME,
OFTSEToffset
(,<FILE=(*filenamel ANCHOR >
or <FILF=<ASSOCIATEDI SUBFILE>,

FlDVAIIE2=field -name)>)

2. ADDLIT(E FIDNAM'E=new fieldname,
FirNAME2=otlher-fieldname

3. CHANGE FIflNAME=field-name,
TYPE= (FLD'YPE=field-type

<,ALIGN=RIGHTILFT >),
FORM (FLDFCRM=field-format,

ELDE=field-length,
ELE !MLEN=eement-length,
EL.ELIt=element-number
<,UNIQUE=<Y N))),

ROUTINES= (CONVconversion-routine,
FOD!IAT=formatting-routine,
VALID=validation-routine,
VALIDARG=validation-arcaument),

INDIXlC= (INDEX=<Y IN),

PAGE 139

IFLrNALIE=field-name
<,EXTINT=<IVTERNAtiEXTERNAL>,

EXTLEN=external-length,
S PA NNED=<Y IN) ,

ASsocir=(ASSOC=<YIN>,
APL1UNAME=field-name),

SUE-FILFD= (SUJBFItE=<Yj N>,
SPIDNAIE=field-name),

STJBFIElD= (BASFFlD=field-name,
SUR3FIELD= (SUBFLD=<7IN>,BASEFLD=FIELDAIE

CFFS ET=offset
<,(FILE=<*filenamet ANCHOR >
or (FILE(<ASSOCIATEr1SUBFILE>,

FLDNAME2= field- name >)

4. CHKPOINT (none)

5. CBEATSUfl MW~AM~E=control-field-nane,
rMAXPECS=4-records,
ASSCC=<YI N>,
AFIAMIE=field-name

6. DELETE PLrNAMI=field-name

7. DISPLAY PLENAME=field-name

8. END (none)

9. FIFLrS (none)

10. FILE rEscoK=(Yjn>

11. FLIESEC F~rNAIE=(field-name<,...>),
SECJRI EY=(«<AflDDElETE>.>

security-code<,...>)

12. MIOVE FLfNAPE1=nev-location-field-name,
FLDNArIE2=field-name

13, PRINT (ncne)

14. RECSEC DFIDNAME=field-name,

PAGE 140

SECURITY = (<<ADD IDELETE>.>
security-code:mask<,...>)

15. RENAME FLENAME1=new-field-name,
FLENAME2=old-fieldname

16, RESTORE (none)

17. SAVSTRT STRTNAME=stratecy-name

18. SUPERFLE FLCNAME=field-name,
ROUTINES= CONV=conversion-routine,

FORMAT=formattinq-routine,
VAIID= validation-routine,
VALIDARG=validation-argument),

FLDIIST= (<<INTERNAI EXTERNAL>.>
field-name<,...>)

C. UPDATE M1OD Command Formats.

1. CHANGE FLtNAME=field-name,
TYPE=(FLDTYPE=field-type

<,ALIGN=<RIGHTtLEFT>>),
FOB= (FLDFCRM=field-format,

FLDLEN=field-lenqth,
ELEMLEN=element-lenqth,
ELEMLIM=element-number,
<,UNIQUE=<Yin>>),

ROUTINES= (CCONV=con version-routine,
FORMAT=formatting-routine,
VALID=validation-routine,
VALIDARG=validation-arqument)

2. DISPLAY FLENAME=field-name

3. END (none)

4. FIELDS (none)

5. FLDSEC FLENAME=field-name,
SECURITY= (<<AED DELETE>. >

security-code<,...>)

PAGE 141

6. PATCH (field-name=value(,.>

7. RECSEC DPtDliA!E=field-name,
SECUfR!TY= («lADDjIDELETE>.>

securitv-code:mask<,. @0>

8. REVIEV FII.E=file-nauie,
FLflNA~i=<*I1EArERjIFIELD-name>

PAGE 142

APPENDIX B.

CREATT MODE

OPEPAND RELATIONSHIPS

When creatinq descriptors there are certain implied
relationships between the various operand combinations that
may be specified. In those cases, the Descriptor Editor
assumes the implied value and over-rides any value specified
by the user. When modifving descriptors the Descriptor
Editcr normally interprets a default response to indicate no
change to a particular operand.

The following table indicates the default values and the
maximum values for several parameters of the AED command.

TABLE 1

CREATE MODE

OPERAND DEFAULT AND MAXIMUM VALUES

DEFAULT MAXIMUM MAXIMUM MAXIMUM
FLDTYPE FLDFMT ALIGNMENT FLDLEN ELEMLEN ELEMLIM

A F L 3996-Key Length NA NA
A V L 3994-Key Length NA NA
A FE L 3994-Key Length 256 (FLDLEN)
A VE L 3994-Key Length 255 (FLDLEN/2)
B F L 1 NA NA
BN F R 1 NA NA
BN FE R 3994-Key Length 1 (FLDLEN)
BP F L 1 NA NA
HX F L 2(3996-Key Length) NA NA
HX V L 2(3994-Key Length) NA NA
HX FE L 2(3994-Key Length) 256 (FLDLEN)
HX VE L 2(3994-Key Length) 255 (FLDLEN/2)
LN F R 4 NA NA
LN FE R 3994-Key Length 4 (FLDLEN/4)
S F R 8 NA NA
S FE R 3994-Key Length 8 (FLDLEN/8)
SD F R 5 NA NA
SD FE R 3994-Key Length 5 (FLDLEN/5)
SN F R 2 NA NA
SN FE R 3994-Key Length 2 (FLDLEN/2)
SS F R 4 NA NA
SS FE R 3994-Key Length 4 (FLDLEN/4)

(1) Default conversion and formatting routine names are
inserted by the editor unless specified by the user.
The routine names have the format DBXXXYY, where;

"XXX" is either CVT for conversion routine or FMT
for a formatting routine, and

"YY" is "SP" for field type "A" and is the field
type itself for all other field types.

PAGE 144

APPENDIX C.

PREEFINEr FIELDS

In most cases when the user defines or creates a new
fieldname there is only one field descriptor created. There
are, however, some exceptions to this which are enumerated
below.

When the anchor file key field is completely defined by the
user, the follcwina fields are automatically defined and
added to the list of field descriptors.

1. The FILETEY field is a field defined over the anchor
file key field. This field has all of the
characteristics of the anchor file key field except for
the field name and that it is a readonly field, that is
a redefined field.

2. The fields FPEEFORM and COMMENTS are defined for the
retrieval system CO~MENTS is a varying length field
designed to hold any comment the user may wish to place
there. FREEFORM will allow the user to specify his own
particular keywords for the file he is referencing and
he is able to base strategies on these user entered
keywords.

The RECLEN is a predefine field which will appear in each
descriptor regicn of the data base. This field defines the
record length field which appears on each variable length
record in a file.

When the user specifies record security for any file, for
the first time, a field is created describing the record
security code that appears in each data record of that file.
This field is placed immediately after the anchor key for
the anchor and associated files, and immediately after the
parent key field on sutfiles.

The record security fieldname is created in the following
manner for the different file types:

1. ANCHOR file - the fieldname is PECSEC.

2. ASSOCIATED file - the fieldname is RECSEC concatenated
to the suffix of the associated file, i.e. 1 to 9.

3. SUBFILE - the fieldname is the subfile control
fieldname concatenated to RS.

When the user creates a subfile by the CPEATSUB command the
following fields are defined:

PAGE 145

1. The subfile ccntrcl field itself which resides either
on the anchor file or an associated file.

2. The subfile key field which is the subfile control
field name concatenated to ID.

3. The subfile parent key field which is a copy of the
parent anchor key field. This fieldname is created by
taking the subfile control fieldname concatenated with
PK.

4. Allowance is made for subfile record security by
creating the fieldname of subfile control field name
concatenated to RS.

The field characteristics of each of the predefined fields
are included in Table 2.

All of the aforementioned fieldnames are included in a
reserved list. These fields cannot be altered by the user
except in the following manner:

To modify FILEKEY, the anchor file key field must be
modified. The predefined fieldnames for record
security cannot be modified in any way and can only be
created through use of the RECSEC command. The RECLEN
field descriptor cannot be modified. The subfile
control field and subfile key field cannot be modified
once created. The sutfile parent key field will only
be changed to reflect changes in the anchor file key
field. The fieldname for subfile record security can
only be created through use of the RECSEC command.

Table 3 contains the names cf the reserved fieldnames.
As subfiles are created, the sutfile control fieldname,
the subfile key fieldname, the subfile parent key field
name, and the sutfile record security fieldname are
placed in the reserved fieldname table, which then
become reserved field names subject to the above listed
restrictions.

TABLE 2

PREDEFINED FIELD CHARACTERISTICS

record(1) subfile (1) subfile(1) subfile (1)

FLDNAME COMMENTS FILEKEY FREEFORM RECLEN security control id parent

ASSOCFIL 1 (none) 1 (none) (none) (5) (none) (none)
SUBFILE (none) (none) (none) (none) (none) (none) (none) (none)
INVFILE (none) (none) A (none) (none) (none) (none) (none)
READONLY NO Y NO YES NO YES NO YES
SUBCNTRL NO N NO NO NO YES NO NO
VARFLD VARYING F VARYING FIXED FIXED VARYING FIXED FIXED
BITFLD NO N NO NO NO NO NO NO
NUMALIGN LEFT (2) LEFT RIGHT LEFT RIGHT RIGHT (2)
VARELT (none) (none) FIXED (none) (none) FIXED (none) (none)
UNIQUELT NO (none) NO (none) (none) YES (none) (none)
INDEXEXT (none) (none) INTERNAL (none) (none) (none) (none) (none)
GENERCRT DBCVTSB (2) DBCVTSB DBCVTRL DBCVTHX DBCVTID DBCVTID (2)
VALIDRTN (none) (2) (none) (none) (none) (none) (none) (2)
REFORMAT DBFMTSB (2) DBFMTSB DBFMTRL DBFMTHX DBFMTID DBFMTID (2)
FLDPOSIT 2 4 1 0 (4) (4) 4 7
FLDLEN 3988 (2) 3988 4 1 (6) 3 (2)
ELTLIM 0 0 100 0 0 (6) 0 0
ELTLEN 0 0 40 0 0 3 0 0
VALIDARG (none) (2) (none) (none) (none) (none) (none) (2)
NAMEFLD (none)(3) (none)(3) (none) (none) (none) (none) (none) (none)
SECURITY (none) (none) (none) (none) (none)(3) (none)(3) (none)(3) (none)(3)

(1) Refer to the text for the derivation of the actual fieldname.
(2) The actual value is taken from the anchor key field.
(3) There is no field security on these fields unless specified by the

user through use of the FLDSEC command.
(4) The value will be determined at "FILE" time.
(5) The value will depend on the "ASSOC" and "AFLDNAME" parameter values

to the CREATSUB command.
(6) The actual value will depend on the input value to "MAXRECS" parameter

to the CREATSUB command.

PAGE 147

APPENEIX D.

DESCFIPTCB FILE OVERVIEW

Each descriptor file is a virtual indexed sequential (VISAI)
region Data Set where the key is developed by concatenating
an eight character field name to a seven character file
name. The name of tle descriptor file is constructed by
appending a "#" to the six-character data base name (padded
with "$" if necessary).

The first record of each set of descriptors is called a
header record and has a field name of blanks. This record
is used by the system to reflect the current status and
level of activity of that file, as well as controlling
access to it, and is composed of fields described in Table
4. The remaining records are the field descriptors,
themselves, and are ccmposed of the fields described in
Table 5.

TABLE 3

PREDEFINED RESERVED FIELDNAMES

1. COMMENTS
2. FILEKEY
3. FREEWORD
4. RECLEN
5. RECSEC
6. RECSEC1
7. RECSEC2
8. RECSEC3
9. RECSEC4

10. RECSEC5
11. RECSEC6
12. RECSEC7
13. RECSEC8
14. RECSEC9

TABLE 4

FILE DESCRIPTOR FIELD SPECIFICATION

FIELD FIELD FIELD FIELD ELEMENT ELEMENT
FIELD NAME TYPE FORMAT LOCATION LENGTH LENGTH COUNT

RECLEN LN F 0 4 0 0

KEY A F 4 15 0 0

FLENAME A F 4 7 0 0

DATAPLEX A F :4 6 0 0

SUFFIX A F 10 1 0 0

FLDNAME A F 11 8 0 0

FILETYPE A F 19 1 0 0

DESCRCT SN F 20 2 0 0

BSELNGTH SN F 22 2 0 0

DESCOK B F 24 0(1) 0 0

SPANNED B F 24 2(1) 0 0

DATA B F 24 4(1) 0 0

MNTNABLE B F 24 6(1) 0 0

MNTNING B F 25 0(1) 0 0

LOADABLE B F 25 4(1) 0 0

REMAINS HX F 26 4 0 0

RECSECFP SN F 30 2 0 0

RSECTYCD A FE 1(2) 164 9 18

(1) For bit switches the length field is used to indicate
the bit location within the byte.

(2) For variable length fields the location field is used
as a variable field index.

TABLE 5

FIELD DESCRIPTOR FIELD SPECIFICATION

FIELD FIELD FIELD FIELD ELEMENT ELEMENT
FIELD NAME TYPE FORMAT LOCATION LENGTH LENGTH COUNT

RECLEN LN F 0 4 0 0
KEY A F 4 15 0 0
FLENAME A F 4 7 0 0
DATAPLEX A F 4 6 0 0
SUFFIX A F 10 1 0 0
FLDNAME A F 11 8 0 0
ASSOCFIL A F 19 1 0 0
SUBFILE A F 20 1 0 0
INVFILE A F 21 1 0 0
READONLY B F 22 0(1) 0 0
SUBCNTRL B F 22 2(1) 0 0
VARFLD B F 22 4(1) 0 0
BITFLD B F 22 6(1) 0 0
NUMALIGN B F 23 0(1) 0 0
VARELT B F 23 2(1) 0 0
UNIQUELT B F 23 4(1) 0 0
INDEXEXT B F 23 6(1) 0 0
GENERCRT A F 24 8 0 0
VALIDRTN A F 32 8 0 0
REFORMAT A F 40' 8 0 0SPARE HX F 48 8 0 0
NAMECNT SN F 56 2 0 0
FLDPOSIT SN F 58 2 0 0
FLDLEN SN F 60 2 0 0
DFLDLEN SN F 62 2 0 0
ELTLIM SN F 64 2 0 0
DELTLIM SN F 66 2 0 0ELTLEN SN F 68 2 0 0
DELTLEN SN F 70 2 0 0
VALIDARG A V 1(2) 52 0 0NAMEFLD A FE 2(2) 146 8 18
SECURITY A FE 3(2)]46 9 16

(1) For bit switches the length field is used to indicate
the bit location within the byte.

(2) For variable length fields the location field is used
as a variable field index.

PAGE 150

APPENDIX E.

THE PCSITICN OF FIELDS WITHIN A RECORD

Fields are positioned in the data record in the order in
which they are created as to the following algorithim. On
the anchor and associated files the order is:

1. RECLEN,

2. anchor file key field,

3. record security field,

4, all packed bit fields,

5. all fixed length fields,

6. all varying length and elemental fields,

On suhfiles the order by position is:

1. RECLEN

2. sutfile key field,

3. sutfile parent key field,

4. record security field,

5. all packed hit fields,

6. all fixed length fields,

7. all varying length and elemental fields.

The Descriptor Editor maintains three lists of fields for
each descriptor region, one list for each of the folloiwing
field groups:

1. packed bit fields,

2. fixed length fields including ordinary or unpacked
bit fields,

3. varying length and elemental fields.

The order within each field group is determined by the order
in which the user creates fields within each group. This
ordering may be chanqed through use of the MOVE command.

PAGE 151

TOPIC D.3 - RDBIOAD - LCADING NEW FILES

I. INTRODUCTICN

The DBLOAD program is used for either initially loadino
data onto a newly defined file, or for updating an
existing file. In either case, the descriptors for
the file must have been completely specified before any
loading of data is attempted. The program is general
in that each input record is passed to a specifically
written sub-routine which identifies each of the fields
that comprise the record, and passes this information
back to DBIOAD fcr processino.

This manual describes the mode of operation for DBLOAD,
and the parameters necessary to invoke it. The
procedures to follow for writing a DBLOAD exit routine
are in this manual.

II. INVOKING DPLOAD

DBLOAD is invcked by entering the LOAD command to the
maintenance sub-system. The format of the command is
as follows:

Command: ICAD
Operand: ICALMOrE=mode,

ICADEXIT=exitname,
KEYFMT=formattinq,
IOAEANC=anchor,
LOAEASSC=associate,
ICALSUB=sub,
INVERTED=index,
IOADINPT=input,
GENERKEY=generate,
EPRFILE=error,
LCADERRS=limit

Where:

mode
identifies the mode of operation for the
proqram.

Specified as: a one character code, 'L' for load
mode, 'U' for update mode, and *R' for restart
mode.

exitname
identifies tle name of the user exit routine which
is to be called to describe the composition of
each input record.

PAGE 152

Specified as: a 1-7 character name of the user
exit routine entry point.

refault: the exit name is constructed by
prefixing the file name with an 'X'.

formatting
identifies tte name of the key field fcrmattinq
routire.

Specified as: a 1-8 character name whose first
character must be alphabetic and whose remaining
characters must be alphanumeric.

anchor
indicates whether the anchor file is to be
loaded.

Specified as: a one character code, 'Y' for yes,
and 'N' for no.

Default: the anchor file will not be loaded.

associate
identifes the associate files to be loaded.

Specified as: a multiple element parenthesized
list cf associated file suffixes (1,2,...9)

sub
identifies the subfiles to be loaded.

Specified as: a multiple element parenthesized
list of subfile suffixes (,S,...

index
identifies the fields to be indexed with this
load.

Specified as: a multiple element parenthesized
list of 1-8 character field names
(FIELE1,FIELE2,...)

input
identifies the fully qualified name of the input
dataset from which rBLOAD is to obtain its data.

Specified as: a 1-35 character fully qualified
dataset name.

Default: the input dataset name is constructed by
appendina the qualifier '.INPUT' to the file
name.

PAGE 153

generate
indicates whether or not large numeric keys are to
be generated for the output data base.

Specified as: a one character code, 'Y' to
indicate that large numeric keys are to be
generated, and 'N' to indicate not to generate
keys.

Default: Keys will not be generated.

error
identifies the fully qualified name of the error
dataset to which invalid input records are to be
dumped.

Specified as: a 1-35 character fully qualified
dataset name.

Default: the error dataset name is constructed by
appending the qualifier '.ERROB' to the file
name.

limit
identifies the number of non-critical data errors
that are allowed before terminating the program.

Specified as: a 1-4 digit number.

refault: a limit of 100 errors is established.

Examples:

1. The user wants to load a file with the anchor,
associated files 1 and 2, subfiles Y and Z. The
key has a formattinq routine entry point name of
DBFMTLN. No fields are to be indexed. User exit
routine is XEXIT and input file DSNAME is
INPUT.FILE.

SYSTEM: ENTEE:
USER : load
SYSTEM: ENTER MODE:
USER : L
SYSTEM: ENTER EXIT ROUTINE NAME:
USER : xexit
SYSTEM: ENTER KEY FORMATTING ROUTINE NAME:
USER : dbfttln
SYSTEM: ANCHCR FILE TO BE LOADED (Y,N)?:
USER : y
SYSTEM: FNTER ASSOCIATED FILES TO LOAD:
USER : (1,2)
SYSTEM: ENTER SUEFILES TO LOAD:

PAGE 154

USER : (,z)
SYSTEM: ENTEE FIELD NAMES TO INVERT:
USER :
SYSTEM: ENTEE INPUT DSNAME:
USER : input.file
SYSTEM: GENERATE LARGE NUMERIC KEYS(N,Y)?:
USER :
SYSTEM: ETER AI1OWAEIE DATABASE ERRORS:
USER :

NOTE: User defaults fields to index to no fields,
generate large numeric keys to no, error dataset
name to FILENAME.ERROR, and data base allowable
errors at 100.

2. The user wishes to restart the example above.
First, the checkpoint backup copies should be
catalcqued as the current data base files to
insure data base integrity.

The user could use the terminal support default
and profile features so all the parameters will
not have to be entered for each restart. The user
can also enter the parameters as a string and not
be prompted for them:

SYSTEM:
USER : load L,xexit,dbfmtln,y,(1,2),

(y,z) ,,input.file

III. OPERATING MODE

A. Load Mode

DELOAt opens the input dataset for input and the
file for output and begins processing.

B. Update Mode

DBLOAr opens the input file for input and the
output file for direct output and begins
processing.

C, Restart Mode

DELOAE opens the file for update and reads the
last record on the anchor file. It uses the key
of this record to position itself in the input
dataset. It then reads the next sequential input
record. It is now ready to begin processing.

IV. DBLOAD EXIT ROUTINES

PAGE 155

A. Introduction

DBLOAE passes each input data record to a user
written exit routine for analysis before actually
writing any data to the file. This routine has
the functicn cf identifying each data field in the
input record with a field name, indicating its
starting location in the inout record, and
specifying the length of the data. If the data
field is cn a subfile, the exit routine has to
identify the sutfile control field name before
any sutfile fields can be put. Initial entry into
the exit routine allocates the field name table
and sets exit routine switches.

Further, the routine can specify that the field
should have leading and/or trailing blanks
stripped off by DBLCAD, that the field be skipped,
that the record be skipped, that the load be
terminated, or that subsequent calls to the exit
routine be skipped. The latter is used to
minimize overhead when each record to be processed
has the same physical characteristics. The
routine must indicate when a new key is to be
located to the output file. This is used in the
case cf multiple input records for an output file
key.

When the update mode is used, the exit routine
must indicate if this is a record to be deleted, a
record to be replaced, or a record with fields to
be replaced.

B. Exit Poutine Parameters

The calling sequence used by DBLOAD to transfer
contrcl to the exit routine is:

CALL exitname (input_ data, userptr,
bypassswitches)

Where:

exitmane
is the entry point name of the routine to be
called.

input_data
is a varying length character string (maximum
size - 4C00 bytes) that contains the entire
input data record, including the four-byte
record length.

PAGE 156

user_ptr
is an external pointer that points to the
user allocated structure containing the field
names, the field lengths, the field offsets,
and the sutfile field suffixes.

bypass switches
is a string of sixteen bit switches to be
posted by the exit routine to further define
the status of the record for DBLOAM. The
crder and meanings of the various bits are:

BYPASS CALL - bypass subsequent calls
PYPASSRECOFD - bypass this record
TCRWAR!_SCAN - delete leading blanks on

fields
EACKWARESCAN - delete trailing blanks on

fields
TERMINATE PGM - terminate the program
DELETE RECOD - delete this record
FEPLACE FECOED - replace this record
UPDATE_RECOFD - replace fields within record
NEW_ KE - locate this new key
BITS 10-16 - unused by DBLOAD

C. Exit Routine User Structure

(APPENDIX A) illustrates how to declare and use
the user based structure. First, set the refer
dimension equal to the maximum number of fields
and elements (one field and a multi-element field
with 10 elements would be 11) plus number of
subfile control fields that may be assigned. Then
allocate the based structure. Next assign the
key name, the key_jtr to the location of the kev
within the input record, and assign the key field
lenoth. Each entry into the exit routine will
then require the field names to be assigned, the
field pointers set to field locations within the
record, the field sizes assiqned, and the subfile
suffixes assigned if field is a subfile control
field.

NOTES:

1. The Key of the input record can be anywhere
in the record.

2. The input data record includes the record
length field.

3. large numeric keys can be generated for the
cutput dataset if desired.

PAGE 157

4, The number of elements in the user structure
is computed by accumulating the total number
of fields and/or elements in the input
record.

5. Any field whose length is zero or whose
pointer is null, is bypassed. If subfile
suffix is not blank, A new subfile record is
located.

D. Sample DBLOAD EXIT Routine

APPENDIX A illustrates the above narrative. The
file has a key, one anchor file field, and two
subhfile fields with two elements each. The fields
are all in field locations. After initial
allocation, (first entry into exit routine), the
only Trccessinq required is to scan a record type
field for the code 'X' used to indicate bypass of
this record. Note that all trailing blanks will
be stripped off and that every input record has a
new key and will have an output record located for
it. The subfile ccntrol field 'KID' has a null
pointer and a field size of zero. The sub_suffix
byte for this field gets assigned a 'Z' to
indicate this is a subfile control field.

V, CHECKPOINT BACKUP

Because restart is very difficult after a TSS system
crash, checkpoint backup of all the files is needed to
insure data integrity between all the associated,
index, sutfiles, and anchor file that could exist
during a load. When the user restarts a load after a
system crash, he should make the last generation of the
files current. This can easily be done by cataloging
'BACKUP.' file (-1) as the current file. DBLOAD will
call a sub-routine every 1,000 records to checkpoint
the files. If the user can insure the data integrity
after a crash (throuqh VINHIZ utility or some other
means) using backup copies will not be necessary.

VI. LOADING MULTI-FILES

For the most efficient use of DBLOAD, only one file
should be loaded on any given TSS userid at a time
(such as the anchor file by itself, or one associate
file by itself), Other files for the same data base
could then be loaded on other TSS userids at the same
time. Alsc, data integrity can be greater insured if a
system crash occurs, because only one file exists on
any given TSS userid, and file keys do not have to
match (such as last anchor file key and associated file

PAGE 158

key).

Subfiles should never be loaded independently of the
anchor file, however. DBPAC must generate the subfile
keys and rost the subfile control field for each
subfile record.

Whenever possible NO field should be indexed while file
is being loaded. The DEPAC inversion process is
extremely involved and degrades the load process. It
is extremely faster to load an entire file and then
index the desired fields with the inversion command
INVERT. This command uses specialized techniques and
the TSS sort utility to tuild the index files.

CrC@ 'P r) r9: ..' 1' 11 C I'0 T i- ' ~ 1 IrH T2 D 0 r)C' C'.TMrN T-4F'r r

Ij -H D r L(K!/

CCCJWnC/I XrX- UFCT Z1*T 07J.~i Vn ~in i Un5 cnr 'Tc !!SF~ DRT-I E

c~n~?~#* ?roT'hy SV'T-~!c TC~!oofl~fcFdRriT ~\~(fl qPTf'-(Z Tf !/'

C~S ~Cr /- ~(j~cr- . . 0 A.ch

0OCl'-Y) 0 T -. r! l 9 C r'k 7!,IT Q rpyrI .I! rlNItc)

CCC1IIC'O IZ y I A, CZ 1E A P " l P (, Cf- C Y T I ::-7- A Tn 0 yt cv c 7 V TC

C C- lT lZ T C '7 A "~ol-F f- YT 7 Ir I r c r, P.rn~r C~~ r)R2, Tr :

C: o Oli n W THC 11~, -D C r k C T t71 :0 '7: v T 1

fCC1"2C I r r -- c ')T CIJ C :- P1"~) /y~% ft!rr A fl .TC rTI T7-
I? C C~ " T LA. n 1, 1 r, p-I-t -17 11SP TH7: nDTT C : T T

f'3- 7 r CC11 TO 2 !l T T Cf 1 , rwD rl, on Ty n Z C T T F NZ

CCCI-n~ r 1 F'olrI-T Tr --h-HL10 I n " j:

0C2 r I r 'XT r7 yCIN l P r-, I) T 1)Z C1C' r) -r(O rT i- plC r IZ

OCCV1 (Inf r) r: r ICc T L iz'r T T rTlq r P Y CY /
OCCrlCC O 11. 1- A r)) f . Th QTHT 1P TI TN!

02 0 ry Vp r.)) (-S: Tr 1\1T E *1
2) -3 0 LN r TTp) /I rJM' lC ,l -1C.

()Of- - !,r1T r-(-, T'i1), /!t: fM nT PTTI T M7

OCCCCL~~ 3fl nS.T ~~ PT()C''r (Ct)) P - HJTH *cn /

C 0C C, l IW ~c t1~c r.Tn (1 r: Tt) 7 A c nr D r, -1rAV oy,.! 71- r

0 C. C 1 7TC(I r4 y DT C q'(nZ- r --0 t' T n 7. T7

0C c ? 1. o 2 !7 1 r) /n: r TN PCTTTn ('p t M TN5 n

rCC: NC 2 A T <? /91 AT TC C, D r- V PT -

(V-V n n rllTT /r, iV 'nr - t r)

10 c c 0n- n T- I n Y71.77r- HT P nl f

0 "0 2 r) P T -r L t T?!'('1'F H T S PTTSrn",u a

2'z Q' TT7'l IF.' n r7 : T r, NI r7 V

a n r, C 0 T T I 1 0 T T -7) J;.N I "I M T:I]L Ir~e FT F ? "

27 N. PhC~ T:r--~ S9: T:lr r-lTNI TI t ID9IvTT

t;;5C~i C.T C- ? I rh C C *2SA) -s

a c c In r- T~~ C 7 A T,- T N~_?I~'' r PM c1- TT

,y)- (n rN ' r ! T : U) \17rl-) I r k-E: C f T-r

r) I l^z r ? r r1 I 7 1 -7 - r l
r I r -jii-T 1) r, i I m.JT Nlr p ~ ~SO y C "

:7 T P 7 ':- 7 - T N' 1' ' T n. j rlC: l p r p Y r-X 1 F1 7 P T I

f, r r m r) T C* n t, T7 ?7 &.1

C C)r f C CT fZo CT C 0 l T T r) D l C? rDIvt

T P T X 7 -, M T si r 1) T 'IC: 1 c' Tr. N! y (

rrC T' T r-' 7n : r I-As 0f Q/ T c 7tn A V

C 7 C-. 1 n a 1 T D, /0 0 C T - I r nr e

ag on cc n crye cryr 000{~l=, /n CTZL.3 <7 r */00 'l0 91.10 c'y r, II) ye q cTi c cTE7ir X c T Y- r N

0C / c non 'ZUP Txe r!-y 1. (Z IL T TX--- j - 3 'UP
n r r- 'r' fc ":ri L!?!TX V /1 i "T.' ff

I n7 C 7 V r)t D, Tpen Iy T: 7 C T n 'z /

OCC"OC'~ 1* 'OECL.^ EX on~ rn an -co /
rCe'y ry - r'l DrT - . oI rkT. - cr, Ttfl r pITrnpn /~~~~'i~~ rl T N!'~f 1 '~ ~ YT~'

C II : n rtn c orc TrN!NT : /C Mr c:ri 7 rN ,o T r r/

0CC-nO is ?ErlL t' aFr c' , q\!~Pl tv - I

c0c.~ !, ne r NT C r Tno1 tro rr n nv 1.

COr\--rrn ru ofars !). I:: ncrpro L=pITH /

0Cronn 3 a l_ u Po (w (.) te c c EY = M/a

F C r-P I \

C C C' C ? f. z, C rP (), 7n o r -yE, r. sI7 Ay f

crr-l"" fa go -TCr 3tenop :"

3O(;% C: C ' evoyup e>-'*' 7 /' cery NIeAt%.CV7970TD nce *1
n I C L)rT7 1A D r L P Y 'V r :

CUn ru is' vni rLyNS A /
C rc2 V T DIA Vu '1 ff-) , /n Iy r !:: -I T . X f L4 I, /

A~~~~racog~~~~ 0 7 PnM Tyo Q9,/ y~ ve capne

'C A 3 fT c r !) -cT f r-L TMr P MV C M I
9~1 ACC-) 1--,f2) 1-- T!7S fl . -L* I -

Ger rC P tTI wrts!rt ; - Ie Vc

O r 0 2 , ^ ? CH^R ?)r: r- Tr N, L N A i r I r!

----- --- I- -- I T I T N I L L ---

I ~ c nJJLJ n V 1"i b.cj. Uz z/ zJ. I =

1IN A~it ij'j~idUL~±ii~ . - J J[
~±±W~.2uz :3:3 _I 4 u V U~A 3(

;a I=c 1..; L.,, L ~LL U

Z-1 =ul oj I oiL 0~J

* . Z .X ia-i - - I -aA.i

ul=L~± 'L.3 0 0 vDLDOj

u L 00-A &&0

OI~ji~iJ uE± -00

V CL 03J
(.>.u~~~~~~. JU.> 1) 0U~ () U U L z _ _ _

(Ii Ju i A V2C4 L IIn

Uo ' u v~~~ CL±j vv- vOUv

&..:: V4l A j :5~a. uL,:Q 3 0

~ U d A Z, A4z 1 ! a/ I" Z; u~~~'i J vI V >~In ~

/4i NL AZ;A 1j~ L/ *zjz j

/V j 6.L' NU A i Vn 4 ;; Q~a iu V i± A. ?t - ,Q

o/4 IJj~ :j ji' 'LU cii o- M

ii4 I u* U. Nu ,:, i 4- ,I; .L ;/ *:j= _,I z W Vi u U;JO

/ :6 U go AlUA1J Uj~jv UL / LdUi u .JL) i J±J _______

/ Z2AA1 9: cizbk Z: Z, -I'zlL (nvi V nII UJLZ uI.L Juli V i ULUjL

/4-t ~i I Li U... jl_- /-i -: (5 Z)ri ~SU~ cL11 41)uu V Ld u U J

@r nrcr 71-4R pTr P. r-r) r
p~ fGO f f" 11(rn c! -, r*jI p r . - - T 7 f-

0 lc i7D 7T ! f) - -TIrT. ! npL ~rl

PAGE 163

TOPIC D,4 - FILE INVERSION - INDEXING

I. INTRODUCTICN

The NASIS inversion program (DBSIVRT) is a maintenance
program for data base file creation. The purpose of
the prograr is to take data from certain fields of a
data base and to post this data to an index file. This
operation can be done automatically by DEPAC during a
normal file loading operation, but it is very time
consuming and could therefore jeopardize the
successful completion of the load. Further, by
separating this function, the capability of creating
indices after a file has been loaded and used is added
to the repertoire cf the NASIS system. Finally, this
separation also permits the use of specialized
techniques suitable specifically to this function to
reduce the amount of time required for the entire
process of loading and index creation.

This manual describes the mode of operation, invoking
DBSIVRT, gives examples of use, and gives additional
program notes.

II. MODE OF OPERATION

The inversion module can create up to ten index files
simultaneovely. Further, these files can each contain
data from up to five separate but related fields. The
module can process a specific number of input records,
a range of input records, or the entire file. The
module can be interrupted by the attention key at any
time and program can then be terminated. Restart
capability is provided at the field reading, sort,
index file creation, and the index file translation
steps.

Step one reads a data base record, strips off the field
being inverted, concatenates the field with the current
anchor key, and record writes the concatenanted string
on a VSAM data set.

The sort step, invokes the TSS sort utility and outputs
sorted VSAE file.

Step three reads the sorted variable VSAM data set and
creates a VISAM file. If the field is not indexed with
external format, this file becomes the data base index
file.

Step four reads the VISAM file created by step three,
translates the keys using a field formatting routine,

PAGE 164

and creates a translated index file.

III. INVOKING DESIVRT

DBSIVRT is invoked throuah the maintenance sub-system
by entering the ccmmand 'INVERT'. The format of the
command is:

Command: INVERT
Operand: FIEID=field,

MOLE=mode,
RECCRDS= records,
RANGE=ranqe

Where:

field
identifies the field(s) to be indexed.

Specified as: a 1-8 character name as entered in
the file descriptors. Multiple fields must be
entered as multiple element list. Fields being
inverted to same index file must be kept
together.

Example: (A1,A2,A3,B1,B2,C) First three fields
go on same index file, fields BI, B2 gc on same
index file, field C goes on index file by
itself.

mode
identifies the program mode of operation.

Specified as: a ocne character code,
F - initial pass, step one
R - restart at step one
S - restart at step two (sort step)
3 - restart at step three
T - restart at translation step

Default: the initial pass ('F') is assumed.

records
identifies the number of data base records to
process.

Specified as: 1-6 numeric characters.

Default: 999,999 records (or entire data base).

range
identifies a range of file keys to process.

PAGF 165

Specified as: a multiple element list of two file

keys, first key being the one to start at, second
key being the one tc end at.

Example: (KEY05,KEY10) Keys 5-10 will be
inverted.

Default: Entire file is assumed.

IV. EXAMPLES

A. User wants to index AUTHORS field in one pass,
User wishes to be prompted for the parameters.

USER : invert
SYSTEM : ENTER FIELDS TO INDEX
(FIELE)(FIELE,FIELD,...):
USER : authors
SYSTEM : ENTER MODE(MODE)(F,R,S,3,T):
USER : f
SYSTEM : ENTER RECORDS TO PROCESS (RECORDS):
USER
SYSTEM : ENTER RANGE OF KEYS TO PROCESS(RANGE)

(XXX,XXX):
USER

NOTE: User defaults records to process to entire
file.

B. User wants to invert 'MAJWORD' and 'MINWORD on
one index file, and 'AUTHORS' on another index
file.

'USER' : INVERT (MAJ ORD,MINWORD,AUTHORS)

NOTE: User defaults program mode to initial pass,
records to process to entire file, and range
cf keys to entire file.

V. PROGRAM NOTES

A. Input dataset to sort step has a DSNAME of
SORTIN.FILENAME.FIELD. 'FILENAME' is the six
character data base name. 'FIELD' is the 1-8
character field name.

B. Cutput from sort step has a DSNA4E of
SORTOUT.PILNAME.FIELD.

C. Input file to translation step has a DSNAME
cf PLEX.FILENAME.FIELD.

D. If ranqe of keys specified, final output

PAGE 166

index file has DSNAME of
PANGE.FIINAME.FIELD. This dataset is used
as input to the index merge program.

E. All SORTIN and SORTOUT and PLEX datasets
should be erased after final index file is
successfully created.

F, Invert as many fields as possible for any
qiven file. This is most efficient for step
one of program since data base records only
have to be accessed one time for multiple
fields.

G. Invert all associated fields separate as one
pass. This is very efficient because only
the associated file is accessed.

PAGE 167

TOPIC D,5 - Combine - Index Merging

I. INTPODUCTICN

The index merge program (DEINDM) is a special program
for the mergina of index files. The user is civen the
option to process duplicate list elements or not, and
to attention ard quit processing cleanly with a
restart capability.

This manual describes the mode of operation for DBINDM,
the parameters used to invoke EBINDM, gives examples of
its use, and gives additional program notes.

II. MODE OF OPEPATION

The merger module can create a new index file, or it
can merge in place to the current index file. The
module can be interrupted by the attention key at any
time and the program can be terminated. A restart
capability is provided at any time during processing.

III, INVOKING DBINDM

DBINDM is invoked through the maintenance sub-system by
entering the command *COMBINE. The format of the
command is:

COMMAND: COEBINE
OPEVANE: MODE = FIRSTPASS

MODE 1 = NEWFILE
FIELD = FIELDNAME
MODE 2 = EUPLICATES

Where:

Mode Identifies the program mode of operation.

Specified as: a one character code,
'F' - FIRSTPASS
'' - RESTART

DEFAULT: NCEE.

Mode 1
Identifies the target merqe file.

Specified as: a one character code,
'1' - New file
'0' - Inplace

Field

PAGE 168

Identifies the master index file.

Specified as: 1-8 character name as entered in
the file descriptors.

Mode 2
Indicates if duplicate list elements will be
processed or not.

Specified as: a one character code,
'1' - Process Duplicates
'0' - No Duplicates Processed.

IV. EXAMPLES

A. A user wants to merqe index
SABILLY.APPCLLO.APOLLOA, with
RANGE.APOLIO.EEYWCBRS and create a new file with
duplicates teing prccessed. Processing duplicates
will entail the posting of all matchinq index list
elements as well as all other elements.

USER : COMBINE
SYSTEF: ENTER MCDE(FIRSTPASS, ESTART) F/R:
USER : f
SYSTEM: ENTER MCDE (1=NEWFILE,0=INPLACE):
USER : 1
SYSTEM: ENTEF INVERTED FIELD NAME:
USER : keywords
SYSTEM: ENTER MODE(1=PROCESS DUPS,0=NODUPS):
USER : 1

NOTE: User is required to respond to every
prompt. NOCNE may he skipped.

V. PROGRAM NOTES:

A. If the user wishes to merge in place, he should
first make a copy of the current index file (for
security reasons).

B. The input cr update index file to be merged is
named RANGE.FILENAME.FIELDNAME. Check this before
processing is begun.

C. When rerginq to a newfile the new file being
created is called INDMRG.FILENAME.FIELDNAME.

D. After the newfile is created and checked, it
should replace the current index file, and the
current index file should be erased.

PAGE 169

TOPIC D.6 - CORRECT CCMMAND

CORRECT in the maintenance sub-system updates a file
on-line. The CCRRECT command allows the owner to examine
the data contained in any of his files. After examininq the
data, the owner may then make additions, deletions or
modifications to it. New files may be created by the
maintenance COREECT command.

CORRECT COMMAND

A. The CCRRECT Command

The format for the CORRECT command is as follows:

Command: CORRECT
Cperand: <FIELD=name>

<,KEY=key>
<,VEPIFY=mode>

Where:

name
identifies the field of the record which the
user wishes to examine.

Srecified as: a 1-8 character data value.

kev
identifies the record within the file which
the user wishes to access.

Specified as: a 1-255 character data value.

mode
identifies the mode of operation for this
session.

Specified as: 'YES', if the user desires an
automatic display of the updated data,
following each CORRECT sub-command, or 'NO',
if he does not.

B. Sub-Commands

The CORRECT Command recognizes the followinq
sub-ccmmands:

1. Art
2. CANCEL
3. CORRECT
4. DELETE

PAGE 170

5. DISPLAY
6. END
7. FIELDS
2. INSERT
9. REPLACE
10. VERIFY

The sub-commands give the owner extensive
capabilities for reviewing and correcting the data
contained in a data base. The sub-commands allow
the user to access the records of a file, either
randomly or sequentially, and to then examine the
data contained in any or all of the fields of the
selected record.

NOTE: All data values entered as operands of
CORRBECT sut-commands must not contain any
embedded ccmmas. Further, any leading blanks
entered with an operand, are stripped off before
syntax analysis. To overcome these restrictions,
the user is permitted to enter operands as quoted
strings. In this mode, all data within the
beginning and ending quote is processed.
(Embedded quotes must be represented as paired
quotes, and are converted.)

PAGE 171

CORRECT ADD Subcommand

The ADE sut-command allows the user to add a new record
to the file, or new data to an existing record. The
new key value is entered with its key field name.
Multiple element fields can be entered as a
parenthesized list. Data can be added to a null field
or new elements can be added to a field. The format
for the cosmand is as follows:

Command: ADD
Operand: FIEID=data,FIELD=(data,data,data),

FIELE=data

Where:

FIELD
is the 1-8 character field name.

data
is the data value to be added.

Specified as a 1-255 character data value.

PAGE 172

CORRECT CANCEL Sutcommand

The CANCEL sub-command allows the user to nullify any
correcticns entered since the last CORRECT or INSERT
sub-command. The format for the command is as
follows:

Command: CANCEL
Operand: (none)

PAGE 173

CORRECT CORRECT Sutccmmand

The COPRICT sut-command allows the user to specify a
new record and/or field which he wishes to examine,
without returning to NASIS command mode. It provides
the additional capability of accessing anchor records
sequentiallv (fcrward or backward) from a oiven ooint.
The format for the command is as follows:

Command: CORECT
Operand: new-field, new-key

Where:

new-field
is the name of the next field in the record to be
examined.

Specified as: a 1-8 character data value.

Eefault: the same field name is used.

new-key
is the key of the next record to be accessed.

Specified as: a 1-255 character data value, or, a
signed intecer value for sequential processina.

Default: the same record is used.

PAGE 174

CORRECT DELETE Sutcommand

The DElETE sub-command allows the user to delete from
the record, an element, a range of elements, a field or
the entire record itself. The format for the command
is as follows:

Command: DELITE
Operand: element-list

Where:

element-list
is the list of elements and/or element ranges to
be deleted.

Specified as: 1) RECORD to delete the entire
record; 2) En to delete an element (n is an
integer identifving the element); 3) (En1,En2) to
delete a range of elements (n1 and n2 are integers
identifving the teqinninq and ending elements of
the range).

Default: the entire field is deleted.

PAGE 175

CORRECT LISPLAY Sutcommand

The DISPLAY sub-command allows the user to display the
entire field in sections, to facilitate the situation
where all of the data cannot be shown on the screen at
once. The user may 'page' sequentially (forward or
backward) through the data, or he may specify the
element number at which he wishes the display to begin.
The command format is as follows:

Command: DISPLAY
Operand: data

Where:

data
identifies the type of display which the user
desires, sequential forward, sequential backward
or positional.

Specified as: 1) E for sequential backward; 2) En
to display from element n.

Defaulti display sequentially forward.

PAGE 176

CORRECT ENE Subcommand

The END sub-command allows the user to terminate
CORRECT processing and return to NASIS command mode.
The format of the command is as follows:

Command: END
Operand: (none)

PAGE 177

CORRECT TIELrS Sutcommand

The FIELDS sub-command allows the user to request a
formatted display cf all of the field names associated
with this data base. The format of the command is as
follows:

Command: FIElDS
Operand: (none)

PAGE 178

CORPECT INSERT SuLcommand

The INSERT sub-ccrmand allows the user to specify new
subfile fields for adding a new subfile record. The
command format is as follows:

Command: INSEPT
Operand: FIEt=data,YIELD=data,...

Where:

FIELD
is the sutfile field name to be added.

data
is the data value of the field to be added.

SDecified as: a 1-255 character data value.

PAGE 179

CORRECT INSERT Subcommand

The REPLACE sut-ccmmand allcws the user to change data,
contained in a field, by value. The format of the
command is as follows:

Command: REPIACF
OFerand: start, end, old-data, new-data

Where:

start
identifies the element number at which scanning
for the old data string is to begin.

Specified as: En where n identifies the element
desired.

Default: the current element number is used.

end
identifies the element at which scanning for the
old data string is to end.

Specified as: En where n identifies the element
desired.

Default: the last element is used.

old-data
identifies the existing data value.

SDecified as: a 1-255 character data value.

new-data
identifies the replacement data value.

Specified as: a 1-255 character data value.

refault: a null value is used.

PAGE 180

CORRECT VEFIFY Sutcommand

The VERIFY sub-ccamand allows the user to change the
mode of operation for a typewriter terminal. The
format of the command is as follows:

Commard: VERIFY
Operand: mode

Where:

mode
identifies the sutsequent mode of operation.

Specified as: 'YES' if the user desires an
automatic display of the updated data, following
each CORRECT sub-command, or 'NO' if he doesn't.

PAGE 181

TOPIC D.7 - RDBMNTN - MEINTENANCE - UPDATE

I. INTRODUCTION

The maintenance program (DBMNTN) is an independent
module to be used for maintaining NASIS data bases.
maintenance consists of additions to, deletions from,
or modifications of the data contrained on a data base.
Transactions are used to describe changes to data base
records and are stored in the TRNSCT Data Base. The
transactions can reference a particular record, field
or element in describing the desired change.

Data base maintenance is executed non-conversationally,
although it is invoked from a conversational terminal.
It must be run under the TSS userid of the owner of the
data base being maintained. The program is restartable
in that, each transaction processed successfully, is
deleted from the transaction data base.

This manual describes the operating procedures, the
mode of operation, and the types of transactions
supported.

II. INVOKING MAINTENANCE

NASIS maintenance is invoked by entering the command
UPDATE to the maintenance sub-system.

III. MAINTENANCE OPERATING PROCEDURES

The data base cwner may use the CORRECT command to
peruse the transactions and to delete any which he
deems tc be unneccessary or invalid (See CORRECT
command User's Guide).

Once the transactions are determined to be acceptable,
he is ready to initiate maintenance. Restart is
similar, but should require no transaction editing.

IV. MODE OF OPTRATICN

Maintenance initiation is a two-step procedure. The
first step is the invccation of the program DBCLMN.
DBCLMN creates a line data set, which will be used by
the TSS command system as the input data set for the
background maintenance task. The SYSIN data set will
be named CLDBMAIN.data base and will contain the CALL
necessary tc execute the maintenance program itself.

The second Part of the Process is the actual execution
of maintenance itself. This phase is always performed

PAGE 182

in the nco-ccnversational mode by executing the data
set created by tECLMN. During this phase, the data
base is opened for update, the transactions are opened
for update and processing begins. Each transaction is
handled separately and if successfully processed, the
transaction is deleted.

PAGE 183

TOPIC E.1 - TSPI/I LANGUAGE EXTENSION

I. INTRODUCTICN

The terminal support preprocessor for NASIS (TS) allows
the PL/I programmer to include in his program,
statements, in normal PI/I syntax, which refer to and
use the various terminal support functions. To enable
the use of the TS preprocessor in a particular program,
it is only necessary to insert the following
statement:

% INCLUDE IISBMAC(TS);

This statement must appear before any actual use of the
preprocesscr itself.

The preprocessor functions available are listed in the
appendix along with the terminal control block (TC)
containing the various switches and control fields that
are used tv terminal support. The functions crovided
perform a set of generalized operations on the terminal
device. These operations can be altered and refined by
the setting of appropriate switches in the TC block
before invoking the particular TS function. This
alteration is most useful for the PUT and PROMPT
operations.

In addition to the functions listed, terminal support
has defined two interrupt conditions, ATTN and END, to
facilitate programmer control of the terminal device.
The ATTN conditicn is raised each time the user
depresses the attention key on his terminal. When this
occurs, terminal support calls the last defined PL/I ON
block for ATTN's via the signal mechanism. If the ON
block returns, terminal support will prompt the user
for a command with the following message:

-ATTN:

The user may respond to this message with any of the
"immediate" commands:

SYNONYM
SYNONYMS
DEFAULT
DETAUITS

EXPLAIN
PROMPT
STRATEGY
KA

PAGE 184

KB
BACK
END
APOFF
GO

A default resoonse is interpreted as a GO. If during
the executicn of one of these commands, the user
depresses the attention key, that command will be
terminated and the user will be reprompted.

The user may define an ON ATTN block in his program,
but he must adhere to the following restrictions:

1. Pe may only issue output TS functions.

2. If he wants to suppress the system prompt, he
must branch out of his ON block (by so doing,
he cannot return to the point of
interruption).

If the user wishes to disable attentions completely, he
must set the 'DISABLED' bit in the system data table
USERTAB. (This action should only be taken in the most
critical situations).

In the above description, if the user had responded
with an END command, terminal support would have raised
the END condition via the signal mechanism. The
purpose of this condition is to provide a standard
method of terminating a program or application and yet
allowing it to perform any "clean-up" actions that are
necessary. As with ATTN, any output TS messages will
be allowed.

The terminal support functions assume that the device
has a screen, and that this screen is divided into an
upper output area and a lower prompting area. The
logical dimensions of the screen are defined by the
physical dimensicns or the default values for the
symbols SCFNHGT and SCRNWTH. The current dimensions of
the screen can be found in the TC block during the
execution of the program.

II. STATEMENTS

A. ENABLE <ATTN I END I *ALL>;

This statement causes the default coding for the
END and/or ATTN conditions to be generated into
the proaram. The default code for ATTN is to
simply return to the point of interruption. The
default code for END is to branch to a routine

PAGE 185

that will terminate the program via a RETURN.

This statement, if present, must appear only once
in the program and before any ENTRY statements.
This statement also implies an ENTRY statement.

B. ENTRY:

This statement must be executed before any other
TS statements, during a particular invocation of
the program. It establishes the default ON
blocks generated by ENABLE and calls terminal
support to initialize the TC block. Because of
its function, an ENTRY statement should appear at
each entry pcint of a program, or at a common
point in the processing for all entry points.

An ENTPY need not follow an ENABLE, as the ENABLE
statement includes and implies ENTRY.

C. ON PAGE CAL (entryV);

This statement establishes the name of the routine
which is to process paging of the screen for the
current function. When a function has filled the
screen with data and terminates with more data to
be displayed, a PAGE command will result in a call
to the entry point specified by the most recent ON
PAGE statement.

The "entry" parameter must be, or will be,
converted to a character string of eight or fewer
characters in length.

D. PROEPT MSG(kev) <USING(inserts)> <INTO(buffer)>;

This statement has two functions, the outputtinq
of a message (where the INTO clause is omitted)
and prompting for a command. The message
specified will be located in DBALIB(0) (LISPMLI)
or LISRIIB(0) (LISRt'L?) and displayed to the user.
Any inserts specified will be placed in the
proper positions within the text before it is
displayed. If the message cannot be found,
terminal support will automatically issue a
diaqncstic containing the message key. If a
command prompt is indicated, the text will be
preceded by a dash (-) and a string of ("': :")
will be appended to it before it is displayed.
All inserts will be stripped of leading and
trailing blanks. Unspecified inserts will be
replaced by "***".

PAGE 186

The "key" parameter must be, or will be converted
to a character string of eight or fewer characters
in length. The "inserts" parameter must be a list
of twenty cr fewer character strings. The
"buffer" parameter must be a character string into
which the command entered is to be placed. It
should be eight characters in length, or
greater.

If the ccmmand entered by the user, after synonvym
search, will not fit in the string specified by
the user, TC.PROMPT.TRUNCATION will be turned on
by terminal support. Further, this, or any other
type of error (syntax, etc.), will cause
TC.PRCMPT.ERFCB to be turned on.

E. PROMPIT MSG(key)<USING(inserts)> KEYWORD(id)
INTO (tuffer);

This statement is used to request parameters
and/or data from the user or from the profile.

The "key" parameter must be, or will be converted
to a character string of eight or fewer characters
in length. The "inserts" parameter must be a list
of twenty or fewer character strings. The "id"
parameter must be, or will be converted to, a
character string of eight or fewer characters in
length. 'he "buffer" parameter must be a
character string into which the data is to be
placed. The maximum size data element returned by
terminal support is 255 characters.

If the TC.PRCMPT.BYPASS bit is turned on by the
user prior to this statement, terminal support
will examine the remaining parameters in its
buffer and the profile for the data value, but
will not prompt the user. Otherwise, if no value
is found in the buffer or in the profile, the user
will be prompted for the data value. If the "id"
parameter is null and the data is specified in
keyword format, terminal support will post the
keyword into C.PPOPTKEYWORD for the user. If
the proqram detects an invalid data value and
wishes to reprompt the user for it, the
TC.PROMPT.EROCR tit should be turned on prior to
the PROMPT. If any errors are encountered by
terminal support, the TC.PROMPT.ERROR bit will be
turned on. If the data entered will not fit into
the string specified, the TC.PROMPT.TRUNCATION bit
will be turned on. If the value returned was
obtained from the user's profile, the
TC.PRCMPT.DEFAULT bit will be turned on.

PAGE 187

Likewise, if the value returned was a quoted
string, the quotes will be removed and the
TC.PRCMPT.STRING bit will be turned on. If the
value returned is an element of a parenthesized
list, only the element will be returned, and the
TC.PRCMPT.MORE DATA bit will be turned on.
Subsecuent prompts will result in succeeding
elements being returned, until the end of the list
is reached.

F. READ INTO(tuffer)

This statement causes the current contents of the
screen to be returned to the user.

The "uffer" parameter must be a character strina
into which tte data is to be placed.

G. WRITE FROM (buffer) ;

This statement causes the screen to be written
from the area specified, without any editing.

The "buffer" parameter must be a character strina
which contains the data to be written.

H. PUT <LINE PAGE)> FRCO(tuffer <TAG(value)>
<FORWARDIBACKWARD>;

This statement causes a new record to be placed
into the screen buffer.

The "tuffer" parameter must be a character strina
which contains the data to be written. The
"value" parameter must be a character string which
is to be used to identify this output record, if
LINE is specified, the record is sequentially
added to the screen buffer. If PAGE is specified,
the screen buffer is reset and this record becomes
the first record of the new screen. The FORWARD
and BACKWARD options are used to control the
direction of the sequential filling of the screen
buffer, from the top down, or from the bottom
up.

If the user's data exceeds the width of the
screen, the second and subsequent lines beqin at
the positicn indicated by TC.OUTPUT.INEENT. If
the user's data causes the screen to overflow,
the amount of data written is indicated by
TC.OUTPUT,WRITTEN. If the user wishes only
complete records to be written to the screen, he
should have TC.OUTPUT.PUTPARTIAL turned off. If

PAGF 188

the user wishes the screen to be automatically
written when the buffer is filled, he should turn
on the TC.CUTPUT.AUTOWRITE bit. If the user
wishes to have his lines split between words (for
text processing) he should turn on the
TC.OUTPUT.WOBD BPEAK bit. If the user has
displayed a seament of the current record on the
previcus page and he wants the remaining segment
tagged and/or indented, he must turn on the
TC.OUTPUT.CONINUATION bit. If the last PUT
caused the buffer to be filled, the
TC.OUTPUT.OVERFLOW will be turned on.

I. FLUSH;:

This statement is used to force the contents of
the screen buffer to be written, even though it is
not filled. If the user wants to indicate that
more data remains to be displayed via the paging
mechanism, he should turn on the
TC.OUTPUT.MORE_DATA bit before his last output
operation.

•J FINISH;

This statement causes the rreprocessor to generate
the necessary code to enable execution time
communication with terminal support. It must be
the last TS statement in the proqram.

PAGE 189

TOPIC F.1 - LIMIT TABLI USER'S GUIDE

The LIMIT table is used by the LIMIT command to determine
the names of the anchcr key subfields and where they are
located within the anchor key. The limit table for a given
data base must be defired by the DBA if the LIMIT command is
to apply to this data tase. These anchor key subfields may
or may not he defined in the data base descriptor file. The
LIMIT table is entirely independant of the descriptor
file.

The LIMIT structure is defined in the data set
specificaticns cf the rWB. This table is initialized by
defining the following FL/I procedure whose name is defined
as "L" concatenated to data base name; i.e. "LERTS". The
module name is formed by concatenatinq "R" to the procedure
name; i.e."RLERTS". This module is to reside in DBALIB.

1 XXXXX: /* PROCEDURE NAME. */
PROCEDURE;

DCL I EIN FIXEr; /* NEEDED FOR PLI PROBLEM. */
% INCLUDE LISRMAC (LIMIT); /* GET LIMIT TABLE. */

IF -ALLOCCATION (LIMIT) THEN
ALLOCATE (LIMIT);

LIMIT.KEYSI E=(nnn); /*WHEE(nnn)IS THE LENGTH */
/*OF THE EXTERNALLY */
/*FORMATTED KEY. */

LIMIT. #ENTRIES= (nnn);/*WHERE (nnn) IS THE NUMBER OF*/
/*SUEFIELES DEFINED ON THE
/*ANCHOR KEY AND HENCE THE
/*NUMBER OF ENTRIES IN THIS */
/*TABLE. 5/

/*NOTE:THERE MUST BE A GROUP OF THE FOLLOWING THREE*/
/*LINES CF CODE FOR EACH ANCHOR KEY SUBFIELD */

LIMIT.FIELD.NAME (i) = FIELDNAME;
/*THE ANCHOR KEY SUBFIEID */
/*NAME */

LIMIT.FIELD.START(i)=(nnn); /*WHERE (nnn) IS THE */
/*IS THE STARTING CHARACTER */
/*POSITION IN THE EXTERNALLY */
/*FORMATTED KEY OF THE ABOVE */
/*ANCHOR KEY SUBFIELD NAME. */

LIMIT.FIELE.LNGTH(i)=(nnn); /*WHERE (nnn) IS THE */
/*LENGTH IN CHARACTERS OF THE */
/*ABOVE ANCHOR KEY SUBFIELD */
/*NAME. */

/*NOTE:THE ABOVE DEFINED SUBFIELD MUST BE WHOLLY */
/*CONTAINEE WITHIN THE ANCHOR KEY FIELD. */

END;

PAGE 190

TOPIC G.1 - USAGE STATISTICS

I. INTPODUCTICN

Usage Statistics is, essentially, a separate sub-system
of NASIS, whose function is to collect and retain
statistics, conceiving the use and status of the
system. The statistics maintained are divided into
retrieval statistics, use of the system, and
maintenance statistics, status of the data. The
retrieval statistics include counts of the number of
times that various commands have been invoked, the
number of retrieval sessions, the dates and time used
for those sessions, as well as the aggreqate time spent
retrieving data. The maintenance statistics include
counts of the numbers of record additions, deletions
and updates, for the anchor file, subrecord files and
for all inverted index files.

The maintenance of these statistics is an automatic
function and will not be discussed here. What will be
covered by this document is the production and use of
the reports available through Usage Statistics. It
should be noted that the retrieval statistics are
available to any NASIS user, while the maintenance
statistics are available to the owner of the dataplex
only.

II. STATISTICS CHECKPCINT

The statistics gathered for retrieval are maintained on
a per session basis, with a capacity for thirteen
sessions before re-initialization is necessary.
Because of this, a check is made each time a new
session is begun, and if re-initialization is
necessary, a checkpoint listing of the retrieval
statistics is rroduced, so that the data on file will
not be lost.

The checkycint report is a formatted list of the data
on file for a particular NASISID, before
reinitialization. It will contain a line entry for
each of the sessions on record, displaying the command
counts, the lines, the date, the file name, and other
pertinent information. The DBA should examine this
report to analyze the usage that NASISID is making of
the syster and of the individual dataplexes. If he
deems that some action is necessary, e.g., a user is
logged ontc the system for excessive periods of time,
but not executing many commands, he should do whatever
he feels is required. In any event, the report should
be retained for future reference and analysis, and

PAGE 191

should protably be filed by NASISID.

A sample checkpoint report is included in Figure 1.

III. RETRIEVAL STATISTICS FEPORT

By submitting JOB CCCRPPNTR, the status of the entire
retrieval satistics file can be presented. This report
displays the activity of the various NASISIES, the
various data tases and the various retrieval
commands.

The retrieval report is formatted by NASISID, with a
line entry for each terminal session. These entries
present the various command counts, the lines, the file
names, and other pertinert information. In addition, a
summary is made, at the end, of the aggregate times and
sessions for all users.

A sample retrieval report is included in Figure 2.

IV. nAIN'ENANCE STATISTICS REPCRT

By submitting JOE CCCRPRTM, the status of the entire
maintenance statistics file can be presented. This
report should be used by the DPA to validate the
maintenance records of each data base. In addition, it
should be used tc assess the maintenance activity of
the various dataplexes. with this information, the DBA
will be in a better position to know the exact status
of his dataplexes, when to backup the system, when to
reorqanize his files, and many other questions that
must be answered in order to maintain proper control
over the system and its data.

The maintenance report is formatted by dataplex name,
with a line entry for each maintenance run. These
entires present the counts of the number of additions,
deletions and updates made to the anchor and associated
files, the subrecord files and the inverted index
files. In addition, a summary is made, for each file
showing the aoareqate and the averaqe number of
additions, deletions and updates to the dataplex.

A sample maintenance report is included in Fiqure 3.

MAINTENANCE STATISTICS FOR SYSTEMS MANAGER ** 01/11/73 PAGE 1

DATAPLEX TOTAL ANCHOR NUMBER TRANS MAINTENANCE FILEPLEX SUBPLEX XPLEX

NAME TRNS RECORDS RUNS RUN DATES ADDS DELETES UPDATES ADDS DELETES UPDATES ADDS DELETES UPDATES

ASRD1$ 3,132 1 12/19/72 3,132

FILEPLEX ADDS DELETES UPDATES

TOTAL 3,132 FOR ALL RUNS

AVERAGE 3,132 PER RUN

~,3 ~T, tS

RETRIEVAL STATISTICS 01/03/73

NASISID CONN-TIME CPU-TIME # STRAT STORED OWNER FILE FIELD ACTUAL TOTAL NUMBER OF1:

HR:MM:SC HR:MM:SC:MS SES LENGTH # ID NAME NAME EXP SEL SRCH CORR

NE01 0:53:30 0:00:48:790 5 0 0

SAOWNER ASRD1$A AUTHOR 3. 0 0 0

SAOWNER ASRD1$B KEYWORDS 13 0 0 0

SAOWNER DB2TDBA EMPAGE 1 0 0 0

SAOWNER DB2TDBB TOTALCAR 1 0 0 0

SAOWNER DB2TDBC KIDAGE 1 0 0 0

SAOWNER DB2TDBD PET 1 0 0 0

SAOWNER DB2TDBE SVCDATE 1 0 0 0

SNAPSHOT (CHECKPOINT)OF RETRIEVAL STATISTICS RECORDS BEFORE REINITIALIZATION

12/18/72 ' PAGE 1

LISR ID CONN-TIME CPU-TIME # STRAT OWNER-ID FIELD FILE SESSION # # # #

HR:MIN:SC HR:MN:SC:MS SES LENGTH NAME NAME DATE EXPANDS SELECTS SEARCHS CORRECTS

NE01 :19:40 0:00:12:399 2 SAOWNER KEYWORDS ASRDI$B 721215

721215 1

721215

721215

721215

721215

721215

721215

721215

721215

721215

721215

721215

721215

PAGE 195

BATCH PRINT MONITOR USER'S GUIDE

I. INTPODUCTICN

The Batch Print Vcnitcr is a completely independent set
of programs which allows one terminal to selectively
execute retrieval print tasks which have been queued by
NASIS users. Execution of a print task implies
identifying the syecific print queue (by NASIS ID) and
specifying the task to be run. Alternatively, the
terminal user may invoke sequential processing of all

NASIS IDs and all outstanding print tasks.

Printed listings are produced off-line and consist of
information retrieved from a NASIS data base accordina
to a format stored by the NASIS user.

II, BATCH PRINT COMMANDS The Batch Print monitor runs under
the MTT Monitor, just as NASIS does, and is invoked by
dialing a TSS/360 telephone number and entering:

BEGIN PRINTS

This will invoke the system and allow one of the
following:

A. PRINT - nasis-id, bsn

where:

"nasis-id" identifies which print queue (by
NASIS-ID) is to be processed.

Specified as:

1. Any valid NASIS-IE,

2. *ALL - process all NASIS-IDs,

"bsn" specifies the print task out of
queue which is to be processed.

Specified as:

1. Any integer in the range 1-199.

2. *ALL - process all outstanding batch
sequence numbers.

B. END - Terminates print monitor execution and
loqoff the task.

C. HOLD - nasis-id,bsn. Requests the monitor to

PAGE 196

place the print task specified by "tsn" and
"nasis-id" (see PRINT command) in hold status and
skip processing until a RELEASE command is
issued.

D. RELEASE - nasis-id, bsn. Inverse of the HOLD
command,

E. NUMBER - nasis-id. Requests a ccunt of
outstanding print tasks for the indicated
"nasis-id" (See PRINT command).

F. CANCEI - nasis-id, bsn. Causes a print task to
be removed from the print queue.

